cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328551 a(n) is the Severi degree for curves of degree n and cogenus 4.

Original entry on oeis.org

0, 0, 0, 666, 36975, 437517, 2667375, 11225145, 37206936, 104285790, 257991042, 579308220, 1203756165, 2347234131, 4340067705, 7670818467, 13041558390, 21436446060, 34205577876, 53166223470, 80723690667, 120014201385, 175072295955, 251025419421
Offset: 1

Views

Author

N. J. A. Sloane, Oct 27 2019

Keywords

Comments

Setting n=4 gives a(4) = 666, and Vainsencher remarks that "... 666 = 126 + 540 [is] the number of 4-nodal quartics through 10 general points. Indeed, a plane quartic with 4 nodes splits as a union of 2 conics, 126 of which pass through 10 points, or of a singular cubic and a line through 10 points."
All terms are divisible by 3, all but every third by 9. - M. F. Hasler, Oct 30 2019

Crossrefs

Programs

  • PARI
    concat([0, 0, 0], Vec(3*x^4*(222 + 10327*x + 42906*x^2 + 1626*x^3 - 17534*x^4 + 9879*x^5 - 2226*x^6 + 160*x^7) / (1 - x)^9 + O(x^30))) \\ Colin Barker, Oct 28 2019
    
  • PARI
    {A328551(n, c=[222, 11881, 109530, 378831, 632340, 555660, 249480, 45360], p=3)=sum(k=1,min(#c,n-=3), c[k]*p*=(n-k+1)/k)} \\ M. F. Hasler, Oct 30 2019

Formula

a(n) = -8865 + (18057/4)*n + (37881/8)*n^2 - 2529*n^3 - 642*n^4 + (1809/4)*n^5 - 27*n^7 + (27/8)*n^8 for n > 2.
From Colin Barker, Oct 28 2019: (Start)
G.f.: 3*x^4*(222 + 10327*x + 42906*x^2 + 1626*x^3 - 17534*x^4 + 9879*x^5 - 2226*x^6 + 160*x^7) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>11.
(End)
a(2+3k) == 3 (mod 9), all other a(n) == 0 (mod 9). Periods mod 5, 7, 2 (of length 5, 7, 8): a(3..7 + 5k) == (0, 1, 0, 2, 0) (mod 5). a(3..9 + 7k) == (0, 1, 1, 3, 4, 1, 4) (mod 7). If 1 <= m <= 8, then a(m + 8k) is odd iff m > 4. - M. F. Hasler, Oct 30 2019

Extensions

New name and a(1)=a(2)=0 from Andrey Zabolotskiy, Jan 19 2021