This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328592 #9 Oct 25 2019 10:04:33 %S A328592 0,1,2,3,4,6,7,8,11,12,13,14,15,16,19,22,23,24,25,26,28,29,30,31,32, %T A328592 35,38,39,44,46,47,48,49,50,52,55,56,57,58,59,60,61,62,63,64,67,70,71, %U A328592 76,78,79,88,92,94,95,96,97,98,100,103,104,110,111,112,113,114 %N A328592 Numbers whose binary expansion has all different lengths of runs of 1's. %C A328592 Also numbers whose binary indices have different lengths of runs of successive parts. A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %C A328592 The complement is {5, 9, 10, 17, 18, 20, 21, 27, ...}. %e A328592 The sequence of terms together with their binary expansions and binary indices begins: %e A328592 0: 0 ~ {} %e A328592 1: 1 ~ {1} %e A328592 2: 10 ~ {2} %e A328592 3: 11 ~ {1,2} %e A328592 4: 100 ~ {3} %e A328592 6: 110 ~ {2,3} %e A328592 7: 111 ~ {1,2,3} %e A328592 8: 1000 ~ {4} %e A328592 11: 1011 ~ {1,2,4} %e A328592 12: 1100 ~ {3,4} %e A328592 13: 1101 ~ {1,3,4} %e A328592 14: 1110 ~ {2,3,4} %e A328592 15: 1111 ~ {1,2,3,4} %e A328592 16: 10000 ~ {5} %e A328592 19: 10011 ~ {1,2,5} %e A328592 22: 10110 ~ {2,3,5} %e A328592 23: 10111 ~ {1,2,3,5} %e A328592 24: 11000 ~ {4,5} %e A328592 25: 11001 ~ {1,4,5} %e A328592 26: 11010 ~ {2,4,5} %t A328592 Select[Range[0,100],UnsameQ@@Length/@Split[Join@@Position[Reverse[IntegerDigits[#,2]],1],#2==#1+1&]&] %Y A328592 The version for prime indices is A130091. %Y A328592 The binary expansion of n has A069010(n) runs of 1's. %Y A328592 The lengths of runs of 1's in the binary expansion of n are row n of A245563. %Y A328592 Numbers whose binary expansion has equal lengths of runs of 1's are A164707. %Y A328592 Cf. A000120, A003714, A014081, A098859, A121016, A328593, A328595, A328596. %K A328592 nonn %O A328592 1,3 %A A328592 _Gus Wiseman_, Oct 20 2019