cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328592 Numbers whose binary expansion has all different lengths of runs of 1's.

This page as a plain text file.
%I A328592 #9 Oct 25 2019 10:04:33
%S A328592 0,1,2,3,4,6,7,8,11,12,13,14,15,16,19,22,23,24,25,26,28,29,30,31,32,
%T A328592 35,38,39,44,46,47,48,49,50,52,55,56,57,58,59,60,61,62,63,64,67,70,71,
%U A328592 76,78,79,88,92,94,95,96,97,98,100,103,104,110,111,112,113,114
%N A328592 Numbers whose binary expansion has all different lengths of runs of 1's.
%C A328592 Also numbers whose binary indices have different lengths of runs of successive parts. A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
%C A328592 The complement is {5, 9, 10, 17, 18, 20, 21, 27, ...}.
%e A328592 The sequence of terms together with their binary expansions and binary indices begins:
%e A328592    0:     0 ~ {}
%e A328592    1:     1 ~ {1}
%e A328592    2:    10 ~ {2}
%e A328592    3:    11 ~ {1,2}
%e A328592    4:   100 ~ {3}
%e A328592    6:   110 ~ {2,3}
%e A328592    7:   111 ~ {1,2,3}
%e A328592    8:  1000 ~ {4}
%e A328592   11:  1011 ~ {1,2,4}
%e A328592   12:  1100 ~ {3,4}
%e A328592   13:  1101 ~ {1,3,4}
%e A328592   14:  1110 ~ {2,3,4}
%e A328592   15:  1111 ~ {1,2,3,4}
%e A328592   16: 10000 ~ {5}
%e A328592   19: 10011 ~ {1,2,5}
%e A328592   22: 10110 ~ {2,3,5}
%e A328592   23: 10111 ~ {1,2,3,5}
%e A328592   24: 11000 ~ {4,5}
%e A328592   25: 11001 ~ {1,4,5}
%e A328592   26: 11010 ~ {2,4,5}
%t A328592 Select[Range[0,100],UnsameQ@@Length/@Split[Join@@Position[Reverse[IntegerDigits[#,2]],1],#2==#1+1&]&]
%Y A328592 The version for prime indices is A130091.
%Y A328592 The binary expansion of n has A069010(n) runs of 1's.
%Y A328592 The lengths of runs of 1's in the binary expansion of n are row n of A245563.
%Y A328592 Numbers whose binary expansion has equal lengths of runs of 1's are A164707.
%Y A328592 Cf. A000120, A003714, A014081, A098859, A121016, A328593, A328595, A328596.
%K A328592 nonn
%O A328592 1,3
%A A328592 _Gus Wiseman_, Oct 20 2019