This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328594 #7 May 01 2020 08:01:41 %S A328594 0,1,2,4,5,6,8,9,11,12,13,14,16,17,18,19,20,21,22,23,24,25,26,27,28, %T A328594 29,30,32,33,34,35,37,38,39,40,41,43,44,46,47,48,49,50,51,52,53,55,56, %U A328594 57,58,59,60,61,62,64,65,66,67,68,69,70,71,72,73,74,75,76,77 %N A328594 Numbers whose binary expansion is aperiodic. %C A328594 A finite sequence is aperiodic if all of its cyclic rotations are distinct. See A000740 or A027375 for details. %C A328594 Also numbers k such that the k-th composition in standard order is aperiodic. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. - _Gus Wiseman_, Apr 28 2020 %e A328594 The sequence of terms together with their binary expansions and binary indices begins: %e A328594 0: 0 ~ {} %e A328594 1: 1 ~ {1} %e A328594 2: 10 ~ {2} %e A328594 4: 100 ~ {3} %e A328594 5: 101 ~ {1,3} %e A328594 6: 110 ~ {2,3} %e A328594 8: 1000 ~ {4} %e A328594 9: 1001 ~ {1,4} %e A328594 11: 1011 ~ {1,2,4} %e A328594 12: 1100 ~ {3,4} %e A328594 13: 1101 ~ {1,3,4} %e A328594 14: 1110 ~ {2,3,4} %e A328594 16: 10000 ~ {5} %e A328594 17: 10001 ~ {1,5} %e A328594 18: 10010 ~ {2,5} %e A328594 19: 10011 ~ {1,2,5} %e A328594 20: 10100 ~ {3,5} %e A328594 21: 10101 ~ {1,3,5} %e A328594 22: 10110 ~ {2,3,5} %e A328594 23: 10111 ~ {1,2,3,5} %e A328594 24: 11000 ~ {4,5} %t A328594 aperQ[q_]:=Array[RotateRight[q,#]&,Length[q],1,UnsameQ]; %t A328594 Select[Range[0,100],aperQ[IntegerDigits[#,2]]&] %Y A328594 The complement is A121016. %Y A328594 The version for prime indices is A085971. %Y A328594 Numbers without proper integer roots are A007916. %Y A328594 Necklaces are A328595. %Y A328594 Lyndon words are A328596. %Y A328594 Aperiodic compositions are A000740. %Y A328594 Aperiodic binary sequences are A027375. %Y A328594 Cf. A000120, A000939, A014081, A065609, A069010, A275692, A323867, A334030. %K A328594 nonn %O A328594 1,3 %A A328594 _Gus Wiseman_, Oct 22 2019