This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328595 #16 May 24 2024 16:22:37 %S A328595 1,2,3,4,6,7,8,10,12,14,15,16,20,24,26,28,30,31,32,36,40,42,44,48,52, %T A328595 54,56,58,60,62,63,64,72,80,84,88,92,96,100,104,106,108,112,116,118, %U A328595 120,122,124,126,127,128,136,144,152,160,164,168,170,172,176,180 %N A328595 Numbers whose reversed binary expansion is a necklace. %C A328595 A necklace is a finite sequence that is lexicographically minimal among all of its cyclic rotations. %H A328595 John Tyler Rascoe, <a href="/A328595/b328595.txt">Table of n, a(n) for n = 1..10000</a> %e A328595 The sequence of terms together with their binary expansions and binary indices begins: %e A328595 1: 1 ~ {1} %e A328595 2: 10 ~ {2} %e A328595 3: 11 ~ {1,2} %e A328595 4: 100 ~ {3} %e A328595 6: 110 ~ {2,3} %e A328595 7: 111 ~ {1,2,3} %e A328595 8: 1000 ~ {4} %e A328595 10: 1010 ~ {2,4} %e A328595 12: 1100 ~ {3,4} %e A328595 14: 1110 ~ {2,3,4} %e A328595 15: 1111 ~ {1,2,3,4} %e A328595 16: 10000 ~ {5} %e A328595 20: 10100 ~ {3,5} %e A328595 24: 11000 ~ {4,5} %e A328595 26: 11010 ~ {2,4,5} %e A328595 28: 11100 ~ {3,4,5} %e A328595 30: 11110 ~ {2,3,4,5} %e A328595 31: 11111 ~ {1,2,3,4,5} %e A328595 32: 100000 ~ {6} %e A328595 36: 100100 ~ {3,6} %t A328595 neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]; %t A328595 Select[Range[100],neckQ[Reverse[IntegerDigits[#,2]]]&] %o A328595 (Python) %o A328595 from itertools import count, islice %o A328595 from sympy.utilities.iterables import necklaces %o A328595 def a_gen(): %o A328595 for n in count(1): %o A328595 t = [] %o A328595 for i in necklaces(n,2): %o A328595 if sum(i)>0: %o A328595 t.append(sum(2**j for j in range(len(i)) if i[j] > 0)) %o A328595 yield from sorted(t) %o A328595 A328595_list = list(islice(a_gen(), 100)) # _John Tyler Rascoe_, May 24 2024 %Y A328595 A similar concept is A065609. %Y A328595 The version with the most significant digit ignored is A328607. %Y A328595 Lyndon words are A328596. %Y A328595 Aperiodic words are A328594. %Y A328595 Binary necklaces are A000031. %Y A328595 Necklace compositions are A008965. %Y A328595 Cf. A000120, A000740, A001037, A032153, A059966, A275692, A328668. %K A328595 nonn,base %O A328595 1,2 %A A328595 _Gus Wiseman_, Oct 22 2019