This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328596 #11 Oct 16 2021 11:55:37 %S A328596 1,2,4,6,8,12,14,16,20,24,26,28,30,32,40,44,48,52,56,58,60,62,64,72, %T A328596 80,84,88,92,96,100,104,106,108,112,116,118,120,122,124,126,128,144, %U A328596 152,160,164,168,172,176,180,184,188,192,200,208,212,216,218,220,224 %N A328596 Numbers whose reversed binary expansion is a Lyndon word (aperiodic necklace). %C A328596 First differs from A091065 in lacking 50. %C A328596 A Lyndon word is a finite sequence that is lexicographically strictly less than all of its cyclic rotations. %F A328596 Intersection of A328594 and A328595. %e A328596 The sequence of terms together with their binary expansions and binary indices begins: %e A328596 1: 1 ~ {1} %e A328596 2: 10 ~ {2} %e A328596 4: 100 ~ {3} %e A328596 6: 110 ~ {2,3} %e A328596 8: 1000 ~ {4} %e A328596 12: 1100 ~ {3,4} %e A328596 14: 1110 ~ {2,3,4} %e A328596 16: 10000 ~ {5} %e A328596 20: 10100 ~ {3,5} %e A328596 24: 11000 ~ {4,5} %e A328596 26: 11010 ~ {2,4,5} %e A328596 28: 11100 ~ {3,4,5} %e A328596 30: 11110 ~ {2,3,4,5} %e A328596 32: 100000 ~ {6} %e A328596 40: 101000 ~ {4,6} %e A328596 44: 101100 ~ {3,4,6} %e A328596 48: 110000 ~ {5,6} %e A328596 52: 110100 ~ {3,5,6} %e A328596 56: 111000 ~ {4,5,6} %e A328596 58: 111010 ~ {2,4,5,6} %t A328596 aperQ[q_]:=Array[RotateRight[q,#]&,Length[q],1,UnsameQ]; %t A328596 neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]; %t A328596 Select[Range[100],aperQ[Reverse[IntegerDigits[#,2]]]&&neckQ[Reverse[IntegerDigits[#,2]]]&] %Y A328596 A similar concept is A275692. %Y A328596 Aperiodic words are A328594. %Y A328596 Necklaces are A328595. %Y A328596 Binary Lyndon words are A001037. %Y A328596 Lyndon compositions are A059966. %Y A328596 Cf. A000031, A000120, A000740, A008965, A027375, A121016. %K A328596 nonn,base %O A328596 1,2 %A A328596 _Gus Wiseman_, Oct 22 2019