This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328600 #8 Oct 27 2019 05:00:20 %S A328600 0,0,0,0,1,0,2,1,3,5,5,7,10,18,20,29,40,58,78,111,156,218,304,429,604, %T A328600 859,1209,1726,2423,3462,4904,7000,9953,14210,20270,28979,41391,59253, %U A328600 84799,121539,174162,249931,358577,515090,739932,1063826,1529766,2201382,3168565 %N A328600 Number of necklace compositions of n with no part circularly followed by a divisor. %C A328600 A necklace composition of n is a finite sequence of positive integers summing to n that is lexicographically minimal among all of its cyclic rotations. %C A328600 Circularity means the last part is followed by the first. %H A328600 Andrew Howroyd, <a href="/A328600/b328600.txt">Table of n, a(n) for n = 1..200</a> %F A328600 a(n) = A318729(n) - 1. %e A328600 The a(5) = 1 through a(13) = 18 necklace compositions (empty column not shown): %e A328600 (2,3) (2,5) (3,5) (2,7) (3,7) (2,9) (5,7) (4,9) %e A328600 (3,4) (4,5) (4,6) (3,8) (2,3,7) (5,8) %e A328600 (2,4,3) (2,3,5) (4,7) (2,7,3) (6,7) %e A328600 (2,5,3) (5,6) (3,4,5) (2,11) %e A328600 (2,3,2,3) (2,4,5) (3,5,4) (3,10) %e A328600 (2,3,2,5) (2,4,7) %e A328600 (2,3,4,3) (2,6,5) %e A328600 (2,8,3) %e A328600 (3,6,4) %e A328600 (2,3,5,3) %t A328600 neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]; %t A328600 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],neckQ[#]&&And@@Not/@Divisible@@@Partition[#,2,1,1]&]],{n,10}] %o A328600 (PARI) %o A328600 b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q,]} %o A328600 seq(n)={my(v=sum(k=1, n, k*b(n, k, (i,j)->i%j<>0))); vector(n, n, sumdiv(n, d, eulerphi(d)*v[n/d])/n)} \\ _Andrew Howroyd_, Oct 26 2019 %Y A328600 The non-necklace version is A328598. %Y A328600 The version with singletons is A318729. %Y A328600 The case forbidding multiples as well as divisors is A328601. %Y A328600 The non-necklace, non-circular version is A328460. %Y A328600 The version for co-primality (instead of divisibility) is A328602. %Y A328600 Necklace compositions are A008965. %Y A328600 Partitions with no part followed by a divisor are A328171. %Y A328600 Cf. A032153, A167606, A318748, A328508, A328593, A328599, A328603, A328608, A328609. %K A328600 nonn %O A328600 1,7 %A A328600 _Gus Wiseman_, Oct 25 2019 %E A328600 Terms a(26) and beyond from _Andrew Howroyd_, Oct 26 2019