This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328601 #9 Oct 27 2019 05:01:11 %S A328601 0,0,0,0,1,0,2,1,2,5,4,7,6,13,14,20,30,38,50,68,97,132,176,253,328, %T A328601 470,631,901,1229,1709,2369,3269,4590,6383,8897,12428,17251,24229, %U A328601 33782,47404,66253,92859,130141,182468,256261,359675,505230,710058,997952,1404214 %N A328601 Number of necklace compositions of n with no part circularly followed by a divisor or a multiple. %C A328601 A necklace composition of n (A008965) is a finite sequence of positive integers summing to n that is lexicographically minimal among all of its cyclic rotations. %C A328601 Circularity means the last part is followed by the first. %H A328601 Andrew Howroyd, <a href="/A328601/b328601.txt">Table of n, a(n) for n = 1..200</a> %F A328601 a(n) = A318730(n) - 1. %e A328601 The a(5) = 1 through a(13) = 6 necklace compositions (empty column not shown): %e A328601 (2,3) (2,5) (3,5) (2,7) (3,7) (2,9) (5,7) (4,9) %e A328601 (3,4) (4,5) (4,6) (3,8) (2,3,7) (5,8) %e A328601 (2,3,5) (4,7) (2,7,3) (6,7) %e A328601 (2,5,3) (5,6) (3,4,5) (2,11) %e A328601 (2,3,2,3) (3,5,4) (3,10) %e A328601 (2,3,2,5) (2,3,5,3) %e A328601 (2,3,4,3) %t A328601 neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]; %t A328601 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],neckQ[#]&&And@@Not/@Divisible@@@Partition[#,2,1,1]&&And@@Not/@Divisible@@@Reverse/@Partition[#,2,1,1]&]],{n,10}] %o A328601 (PARI) %o A328601 b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q,]} %o A328601 seq(n)={my(v=sum(k=1, n, k*b(n, k, (i,j)->i%j<>0 && j%i<>0))); vector(n, n, sumdiv(n, d, eulerphi(d)*v[n/d])/n)} \\ _Andrew Howroyd_, Oct 26 2019 %Y A328601 The non-necklace version is A328599. %Y A328601 The case forbidding divisors only is A328600 or A318729 (with singletons). %Y A328601 The non-necklace, non-circular version is A328508. %Y A328601 The version for co-primality (instead of indivisibility) is A328597. %Y A328601 Cf. A000740, A008965, A032153, A167606, A318748, A328171, A328460, A328593, A328598, A328602, A328603, A328608, A328609. %K A328601 nonn %O A328601 1,7 %A A328601 _Gus Wiseman_, Oct 25 2019 %E A328601 Terms a(26) and beyond from _Andrew Howroyd_, Oct 26 2019