This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328603 #7 Oct 29 2019 21:08:42 %S A328603 1,2,3,5,7,11,13,15,17,19,23,29,31,33,35,37,41,43,47,51,53,55,59,61, %T A328603 67,69,71,73,77,79,83,85,89,91,93,95,97,101,103,105,107,109,113,119, %U A328603 123,127,131,137,139,141,143,145,149,151,155,157,161,163,165,167 %N A328603 Numbers whose prime indices have no consecutive divisible parts, meaning no prime index is a divisor of the next-smallest prime index, counted with multiplicity. %C A328603 First differs from A304713 in having 105, with prime indices {2, 3, 4}. %C A328603 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %F A328603 Intersection of A005117 and A328674. %e A328603 The sequence of terms together with their prime indices begins: %e A328603 1: {} %e A328603 2: {1} %e A328603 3: {2} %e A328603 5: {3} %e A328603 7: {4} %e A328603 11: {5} %e A328603 13: {6} %e A328603 15: {2,3} %e A328603 17: {7} %e A328603 19: {8} %e A328603 23: {9} %e A328603 29: {10} %e A328603 31: {11} %e A328603 33: {2,5} %e A328603 35: {3,4} %e A328603 37: {12} %e A328603 41: {13} %e A328603 43: {14} %e A328603 47: {15} %e A328603 51: {2,7} %t A328603 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A328603 Select[Range[100],!MatchQ[primeMS[#],{___,x_,y_,___}/;Divisible[y,x]]&] %Y A328603 A subset of A005117. %Y A328603 These are the Heinz numbers of the partitions counted by A328171. %Y A328603 The non-strict version is A328674 (Heinz numbers for A328675). %Y A328603 The version for relatively prime instead of indivisible is A328335. %Y A328603 Compositions without consecutive divisibilities are A328460. %Y A328603 Numbers whose binary indices lack consecutive divisibilities are A328593. %Y A328603 The version with all pairs indivisible is A304713. %Y A328603 Cf. A056239, A112798, A316476, A318726, A318729, A326704, A328336, A328598, A328599. %K A328603 nonn %O A328603 1,2 %A A328603 _Gus Wiseman_, Oct 26 2019