This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328608 #7 Oct 26 2019 10:00:30 %S A328608 6,12,18,20,22,24,28,30,40,48,56,66,68,70,72,76,78,80,82,84,86,88,92, %T A328608 94,96,104,108,110,112,114,116,118,120,124,126,132,144,148,156,160, %U A328608 172,176,180,188,192,196,204,208,212,220,224,236,240,244,252,258,264 %N A328608 Numbers whose binary indices have no part circularly followed by a divisor or a multiple. %C A328608 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %C A328608 Circularity means the last part is followed by the first. %C A328608 Note that this is a somewhat degenerate case, as a part could only be followed by a divisor if it is the last part followed by the first. %e A328608 The sequence of terms together with their binary expansions and binary indices begins: %e A328608 6: 110 ~ {2,3} %e A328608 12: 1100 ~ {3,4} %e A328608 18: 10010 ~ {2,5} %e A328608 20: 10100 ~ {3,5} %e A328608 22: 10110 ~ {2,3,5} %e A328608 24: 11000 ~ {4,5} %e A328608 28: 11100 ~ {3,4,5} %e A328608 30: 11110 ~ {2,3,4,5} %e A328608 40: 101000 ~ {4,6} %e A328608 48: 110000 ~ {5,6} %e A328608 56: 111000 ~ {4,5,6} %e A328608 66: 1000010 ~ {2,7} %e A328608 68: 1000100 ~ {3,7} %e A328608 70: 1000110 ~ {2,3,7} %e A328608 72: 1001000 ~ {4,7} %e A328608 76: 1001100 ~ {3,4,7} %e A328608 78: 1001110 ~ {2,3,4,7} %e A328608 80: 1010000 ~ {5,7} %e A328608 82: 1010010 ~ {2,5,7} %e A328608 84: 1010100 ~ {3,5,7} %t A328608 Select[Range[100],!MatchQ[Append[Join@@Position[Reverse[IntegerDigits[#,2]],1],1+IntegerExponent[#,2]],{___,x_,y_,___}/;Divisible[x,y]||Divisible[y,x]]&] %Y A328608 The composition version is A328599. %Y A328608 The necklace composition version is A328601. %Y A328608 Compositions with no consecutive divisors or multiples are A328508. %Y A328608 Numbers whose binary indices are pairwise indivisible are A326704. %Y A328608 Cf. A000031, A318726, A318729, A328171, A328460, A328593, A328598, A328600, A328603. %K A328608 nonn %O A328608 1,1 %A A328608 _Gus Wiseman_, Oct 25 2019