A329017
a(n) = p(0,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(3/2) as in A328644.
Original entry on oeis.org
1, 1, 7, 13, 11, 133, 463, 1261, 4039, 2321, 35839, 105469, 320503, 953317, 575267, 8596237, 25854247, 77431669, 232557151, 139429433, 2092490071, 6275373061, 18830313487, 56482551853, 6778577311, 508359743893, 1525146340543, 4575304803901, 13726182847159
Offset: 1
-
c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];
r = Sqrt[3/2]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]; (* A328644 *)
Table[f[x, n] /. x -> 0, {n, 1, 30}] (* A329017 *)
Table[f[x, n] /. x -> 1, {n, 1, 30}] (* A329018 *)
Table[f[x, n] /. x -> 2, {n, 1, 30}] (* A329019 *)
(* Peter J. C. Moses, Nov 01 2019 *)
A329018
a(n) = p(1,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(3/2) as in A328644.
Original entry on oeis.org
1, 7, 43, 259, 311, 9331, 55987, 335923, 2015539, 2418647, 72559411, 435356467, 2612138803, 15672832819, 18807399383, 564221981491, 3385331888947, 20311991333683, 121871948002099, 146246337602519, 4387390128075571, 26324340768453427, 157946044610720563
Offset: 1
-
c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];
r = Sqrt[3/2]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]; (* A328644 *)
Table[f[x, n] /. x -> 0, {n, 1, 30}] (* A329017 *)
Table[f[x, n] /. x -> 1, {n, 1, 30}] (* A329018 *)
Table[f[x, n] /. x -> 2, {n, 1, 30}] (* A329019 *)
(* Peter J. C. Moses, Nov 01 2019 *)
A329019
a(n) = p(1,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(3/2) as in A328644.
Original entry on oeis.org
1, 13, 133, 1261, 2321, 105469, 953317, 8596237, 77431669, 139429433, 6275373061, 56482551853, 508359743893, 4575304803901, 8235602334113, 370603178776909, 3335432903959477, 30018913315504477, 270170288559017029, 486306574381812041, 21883796946693169621
Offset: 1
-
c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];
r = Sqrt[3/2]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]; (* A328644 *)
Table[f[x, n] /. x -> 0, {n, 1, 30}] (* A329017 *)
Table[f[x, n] /. x -> 1, {n, 1, 30}] (* A329018 *)
Table[f[x, n] /. x -> 2, {n, 1, 30}] (* A329019 *)
(* Peter J. C. Moses, Nov 01 2019 *)
Showing 1-3 of 3 results.
Comments