This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328650 #10 Nov 06 2019 19:16:49 %S A328650 -1,1,4,-3,-6,-12,5,24,24,32,-11,-50,-120,-80,-80,21,132,300,480,240, %T A328650 192,-43,-294,-924,-1400,-1680,-672,-448,85,688,2352,4928,5600,5376, %U A328650 1792,1024,-171,-1530,-6192,-14112,-22176,-20160,-16128,-4608,-2304,341,3420 %N A328650 Triangular array read by rows: row n shows the coefficients of this polynomial of degree n: (1/n!)*(numerator of n-th derivative of 1)/(1-x-2x^2). %C A328650 It appears that the number of nonconstant polynomial divisors of the n-th polynomial is given by A032741. %e A328650 First eight rows: %e A328650 -1; %e A328650 1, 4; %e A328650 3, -6, -12; %e A328650 5, 24, 24, 32; %e A328650 -11, -50, -120, -80, -80; %e A328650 21, 132, 300, 480, 240, 192; %e A328650 -43, -294, -924, -1400, -1680, -672, -448; %e A328650 85, 688, 2352, 4928, 5600, 5376, 1792, 1024; %e A328650 First eight polynomials: %e A328650 -1 %e A328650 1 + 4 x %e A328650 -3 (1 + 2 x + 4 x^2) %e A328650 (1 + 4 x) (5 + 4 x + 8 x^2) %e A328650 -11 - 50 x - 120 x^2 - 80 x^3 - 80 x^4 %e A328650 3 (1 + 4 x) (1 + 2 x + 4 x^2) (7 + 2 x + 4 x^2) %e A328650 -43 - 294 x - 924 x^2 - 1400 x^3 - 1680 x^4 - 672 x^5 - 448 x^6 %e A328650 (1 + 4 x) (5 + 4 x + 8 x^2) (17 + 56 x + 120 x^2 + 32 x^3 + 32 x^4) %t A328650 g[x_, n_] := Numerator[ Factor[D[1/(1 - x - 2 x^2), {x, n}]]] %t A328650 Column[Expand[Table[g[x, n]/n!, {n, 0, 12}]]] (* A328650 polynomials *) %t A328650 h[n_] := CoefficientList[g[x, n]/n!, x]; %t A328650 Table[h[n], {n, 0, 10}] (* A328650 sequence *) %t A328650 Column[%] (* A328650 array *) %Y A328650 Cf. A000032, A328646. %K A328650 tabl,sign %O A328650 0,3 %A A328650 _Clark Kimberling_, Nov 01 2019