This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328656 #117 Oct 08 2022 00:00:26 %S A328656 1,2,4,9,13,27,34,135,159,186,212,315,363,453,693,922,1496,4765,6709, %T A328656 44555,73997,82552,87761,95248,415587,420891,1115578,8546950,24360732, %U A328656 41820581,1048449114,3570918901,35016977796 %N A328656 Numbers m such that d(m) < d(k) for all k < m, where d is the normalized delta defined as d(m) = (z(m+1) - z(m))*(log(z(m)/(2*Pi))/(2*Pi)) where z(k) is the imaginary part of the k-th Riemann zeta zero. %C A328656 No more records up to k = 103800788359. %C A328656 Indices of zeros for successive maximal records of the normalized delta see A329742. %C A328656 a(28)-a(33) computed by David Platt (2020). %C A328656 Conjectural next terms: 1217992279429, 4088664936219. %H A328656 Xavier Gourdon, <a href="https://www.semanticscholar.org/paper/The-10-13-first-zeros-of-the-Riemann-Zeta-function-Xavier/6eff62ff5d98e8ad2ad8757c0faf4bac87546f27">The 1013 first zeros of the Riemann Zeta function, and zeros computation at very large height</a>, 2004. %H A328656 David Platt, <a href="/A328656/a328656.txt">Results computation of the smallest relative gaps between successive zeta zeros, 2020.</a> %e A328656 n | a(n) | d(n) %e A328656 ---+-------+------------ %e A328656 1 | 1 | 0.88871193 %e A328656 2 | 2 | 0.76669277 %e A328656 3 | 4 | 0.63017799 %e A328656 4 | 9 | 0.57239954 %e A328656 5 | 13 | 0.53062398 %e A328656 6 | 27 | 0.52634271 %e A328656 7 | 34 | 0.38628922 %e A328656 8 | 135 | 0.37238098 %e A328656 9 | 159 | 0.35780768 %e A328656 10 | 186 | 0.32438582 %e A328656 11 | 212 | 0.29105188 %e A328656 12 | 315 | 0.24707528 %e A328656 13 | 363 | 0.24343744 %e A328656 14 | 453 | 0.23631515 %e A328656 15 | 693 | 0.18028720 %e A328656 16 | 922 | 0.13762601 %e A328656 17 | 1496 | 0.08925253 %e A328656 18 | 4765 | 0.04628960 %e A328656 19 | 6709 | 0.04209838 %e A328656 20 | 44555 | 0.04074628 %t A328656 prec = 30; min = 10; aa = {}; Do[kk = N[Im[(ZetaZero[n + 1] - ZetaZero[n])], prec] (Log[N[Im[ZetaZero[n]], prec]/(2 Pi)]/(2 Pi)); %t A328656 If[kk <min, min = kk; AppendTo[aa, n]], {n, 1, 2000000}]; aa %Y A328656 Cf. A114856, A254297, A255739, A255742, A326502, A329742. %K A328656 nonn %O A328656 1,2 %A A328656 _Artur Jasinski_, Jan 03 2020