A328663 Super pseudoprimes to base 3 (A328662) with more than two prime factors (counted with multiplicity).
7381, 512461, 532171, 1018601, 2044657, 3882139, 5934391, 8624851, 10802017, 14396449, 19383673, 25708453, 32285041, 35728129, 35807461, 38316961, 43040161, 53369149, 58546753, 59162891, 64464919, 71386849, 75397891, 79511671, 81276859, 83083001, 84890737, 85636609
Offset: 1
Keywords
Examples
512461 is in the sequence since it is a Fermat pseudoprime to base 3, 3^512460 == 1 (mod 512461), and all of its divisors that are larger than 1 are either primes (31, 61, and 271), or Fermat pseudoprimes to base 3 (1891, 8401, 16531, 512461).
References
- Michal Krížek, Florian Luca, and Lawrence Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, Springer-Verlag, New York, 2001, chapter 12, Fermat's Little Theorem, Pseudoprimes, and Superpseudoprimes, pp. 130-146.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..400
- J. Fehér and P. Kiss, Note on super pseudoprime numbers, Ann. Univ. Sci. Budapest, Eötvös Sect. Math., Vol. 26 (1983), pp. 157-159, entire volume.
- B. M. Phong, On super pseudoprimes which are products of three primes, Ann. Univ. Sci. Budapest. Eótvós Sect. Math., Vol. 30 (1987), pp. 125-129, entire volume.
- Andrzej Rotkiewicz, Solved and unsolved problems on pseudoprime numbers and their generalizations, Applications of Fibonacci numbers, Springer, Dordrecht, 1999, pp. 293-306.
- Lawrence Somer, On superpseudoprimes, Mathematica Slovaca, Vol. 54, No. 5 (2004), pp. 443-451.
Programs
-
Mathematica
aQ[n_]:= PrimeOmega[n] > 2 && AllTrue[Rest[Divisors[n]], PowerMod[3, #-1, #] == 1 &]; Select[Range[10^5], aQ]
Comments