cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328664 Least super pseudoprime to base n that is not a semiprime.

Original entry on oeis.org

294409, 7381, 13981, 342271, 9331, 747289, 63, 8, 99, 4921, 1729, 12, 195, 355957, 255, 8, 325, 18, 399, 20, 483, 1183, 575, 8, 27, 1729, 27, 28, 637, 30, 1023, 8, 105, 153, 1295, 12, 1105, 29659, 1599, 8, 12167, 42, 45, 44, 45, 1105, 637, 8, 147, 50, 2703, 27
Offset: 2

Views

Author

Amiram Eldar, Oct 24 2019

Keywords

Comments

A number is super pseudoprime to base n > 1 if it is a Fermat pseudoprime to base n and of whose divisors that are larger than 1 are either primes or Fermat pseudoprimes to base n.
The semiprime Fermat pseudoprimes are trivial terms since they do not have composite proper divisors.

Examples

			a(2) = 294409 = 37 * 73 * 109 is the first term of A178997.
a(3) = 7381 = 11^2 * 61 is the first term of A328663.
		

References

  • Michal Krížek, Florian Luca, and Lawrence Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, Springer-Verlag, New York, 2001, chapter 12, Fermat's Little Theorem, Pseudoprimes, and Superpseudoprimes, pp. 130-146.

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k=1}, While[PrimeOmega[k] < 3 || !AllTrue[Rest[Divisors[k]], PowerMod[n, #-1, #] == 1 &], k++]; k]; Array[a, 10, 2]