A328666 A recursively defined integer-valued function of integer multisets.
0, 1, 2, 2, 3, 5, 4, 6, 4, 10, 5, 6, 6, 17, 13, 8, 7, 18, 8, 22, 10, 26, 9, 42, 6, 37, 12, 18, 10, 70, 11, 40, 29, 50, 25, 20, 12, 65, 20, 24, 13, 105, 14, 54, 34, 82, 15, 32, 8, 38, 53, 38, 16, 78, 34, 114, 34, 101, 17, 30, 18, 122, 12, 48, 15
Offset: 1
Keywords
Examples
For r=2 only allowable 2-partition of {k_1,k_2} is {k_1} union {k_2}, giving K = {k_1}^2+{k_2}^2, K' = {k_1}^2, K" = {k_2}^2, g = k_1*k_2*gcd(k_1,k_2), n = p_{k_1}p_{k_2}, F({k_i}) = k_i (i=1,2), and so a(n) = F({k_1,k_2}) = F({k_1})F({k_2})K/g = ({k_1}^2+{k_2}^2)/gcd(k_1,k_2). Thus for example a(10) = a(p_1p_3) = 1^2+3^2 = 10.
Links
- Chris Pinner and Chris Smyth, Lattices of minimal index in Z^n having an orthogonal basis containing a given basis vector
Crossrefs
Cf. A327267.
Comments