This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328671 #5 Nov 01 2019 18:40:54 %S A328671 1,6,12,18,20,22,24,28,48,56,66,68,70,72,76,80,82,84,86,88,92,96,104, %T A328671 112,120,132,144,148,176,192,196,208,212,224,240,258,264,272,274,280, %U A328671 296,304,312,320,322,328,336,338,344,352,360,368,376,384,400,416,432 %N A328671 Numbers whose binary indices are relatively prime and pairwise indivisible. %C A328671 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %F A328671 Intersection of A291166 with A326704. %e A328671 The sequence of terms together with their binary expansions and binary indices begins: %e A328671 1: 1 ~ {1} %e A328671 6: 110 ~ {2,3} %e A328671 12: 1100 ~ {3,4} %e A328671 18: 10010 ~ {2,5} %e A328671 20: 10100 ~ {3,5} %e A328671 22: 10110 ~ {2,3,5} %e A328671 24: 11000 ~ {4,5} %e A328671 28: 11100 ~ {3,4,5} %e A328671 48: 110000 ~ {5,6} %e A328671 56: 111000 ~ {4,5,6} %e A328671 66: 1000010 ~ {2,7} %e A328671 68: 1000100 ~ {3,7} %e A328671 70: 1000110 ~ {2,3,7} %e A328671 72: 1001000 ~ {4,7} %e A328671 76: 1001100 ~ {3,4,7} %e A328671 80: 1010000 ~ {5,7} %e A328671 82: 1010010 ~ {2,5,7} %e A328671 84: 1010100 ~ {3,5,7} %e A328671 86: 1010110 ~ {2,3,5,7} %e A328671 88: 1011000 ~ {4,5,7} %t A328671 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A328671 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A328671 Select[Range[100],GCD@@bpe[#]==1&&stableQ[bpe[#],Divisible]&] %Y A328671 The version for prime indices (instead of binary indices) is A328677. %Y A328671 Numbers whose binary indices are relatively prime are A291166. %Y A328671 Numbers whose distinct prime indices are pairwise indivisible are A316476. %Y A328671 BII-numbers of antichains are A326704. %Y A328671 Relatively prime partitions whose distinct parts are pairwise indivisible are A328676, with strict case A328678. %Y A328671 Cf. A000120, A121016, A285573, A303362, A304713, A305148, A316468, A316475. %K A328671 nonn %O A328671 1,2 %A A328671 _Gus Wiseman_, Oct 29 2019