This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328672 #16 Jan 21 2021 03:00:49 %S A328672 0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1, %T A328672 1,1,1,3,1,1,1,4,1,4,1,1,2,7,1,6,1,3,3,10,1,9,3,5,4,17,1,23,6,7,6,20, %U A328672 3,36,9,15,7,45,5,56,14,17,20,65,7,83,18,40 %N A328672 Number of integer partitions of n with relatively prime parts in which no two distinct parts are relatively prime. %C A328672 Positions of terms greater than 1 are {31, 37, 41, 43, 46, 47, 49, ...}. %C A328672 A partition with no two distinct parts relatively prime is said to be intersecting. %H A328672 Fausto A. C. Cariboni, <a href="/A328672/b328672.txt">Table of n, a(n) for n = 0..400</a> %F A328672 a(n > 0) = A202425(n) + 1. %e A328672 Examples: %e A328672 a(31) = 2: a(46) = 2: %e A328672 (15,10,6) (15,15,10,6) %e A328672 (1^31) (1^46) %e A328672 a(37) = 3: a(47) = 7: %e A328672 (15,12,10) (20,15,12) %e A328672 (15,10,6,6) (21,14,12) %e A328672 (1^37) (20,15,6,6) %e A328672 a(41) = 4: (21,14,6,6) %e A328672 (20,15,6) (15,12,10,10) %e A328672 (21,14,6) (15,10,10,6,6) %e A328672 (15,10,10,6) (1^47) %e A328672 (1^41) a(49) = 6: %e A328672 a(43) = 4: (24,15,10) %e A328672 (18,15,10) (18,15,10,6) %e A328672 (15,12,10,6) (15,12,12,10) %e A328672 (15,10,6,6,6) (15,12,10,6,6) %e A328672 (1^43) (15,10,6,6,6,6) %e A328672 (1^39) %t A328672 Table[Length[Select[IntegerPartitions[n],GCD@@#==1&&And[And@@(GCD[##]>1&)@@@Subsets[Union[#],{2}]]&]],{n,0,32}] %Y A328672 The Heinz numbers of these partitions are A328679. %Y A328672 The strict case is A318715. %Y A328672 The version for non-isomorphic multiset partitions is A319759. %Y A328672 Relatively prime partitions are A000837. %Y A328672 Intersecting partitions are A328673. %Y A328672 Cf. A078374, A285573, A289509, A291166, A303140, A305148, A316476, A326910, A326912. %K A328672 nonn %O A328672 0,32 %A A328672 _Gus Wiseman_, Oct 29 2019