This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328673 #13 Jan 19 2021 21:54:57 %S A328673 1,1,2,2,3,2,5,2,6,4,9,2,15,2,17,10,23,2,39,2,46,18,58,2,95,8,103,31, %T A328673 139,2,219,3,232,59,299,22,452,4,492,104,645,5,920,5,1006,204,1258,8, %U A328673 1785,21,1994,302,2442,11,3366,71,3738,497,4570,18,6253,24,6849 %N A328673 Number of integer partitions of n in which no two distinct parts are relatively prime. %C A328673 A partition with no two distinct parts relatively prime is said to be intersecting. %H A328673 Fausto A. C. Cariboni, <a href="/A328673/b328673.txt">Table of n, a(n) for n = 0..350</a> %F A328673 a(n > 0) = A200976(n) + 1. %e A328673 The a(1) = 1 through a(10) = 9 partitions (A = 10): %e A328673 1 2 3 4 5 6 7 8 9 A %e A328673 11 111 22 11111 33 1111111 44 63 55 %e A328673 1111 42 62 333 64 %e A328673 222 422 111111111 82 %e A328673 111111 2222 442 %e A328673 11111111 622 %e A328673 4222 %e A328673 22222 %e A328673 1111111111 %t A328673 Table[Length[Select[IntegerPartitions[n],And@@(GCD[##]>1&)@@@Subsets[Union[#],{2}]&]],{n,0,20}] %Y A328673 The Heinz numbers of these partitions are A328867 (strict case is A318719). %Y A328673 The relatively prime case is A328672. %Y A328673 The strict case is A318717. %Y A328673 The version for non-isomorphic multiset partitions is A319752. %Y A328673 The version for set-systems is A305843. %Y A328673 The version involving all parts (not just distinct ones) is A200976. %Y A328673 Cf. A000837, A202425, A305148, A305854, A306006, A316476, A326910. %K A328673 nonn %O A328673 0,3 %A A328673 _Gus Wiseman_, Oct 29 2019