cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328673 Number of integer partitions of n in which no two distinct parts are relatively prime.

This page as a plain text file.
%I A328673 #13 Jan 19 2021 21:54:57
%S A328673 1,1,2,2,3,2,5,2,6,4,9,2,15,2,17,10,23,2,39,2,46,18,58,2,95,8,103,31,
%T A328673 139,2,219,3,232,59,299,22,452,4,492,104,645,5,920,5,1006,204,1258,8,
%U A328673 1785,21,1994,302,2442,11,3366,71,3738,497,4570,18,6253,24,6849
%N A328673 Number of integer partitions of n in which no two distinct parts are relatively prime.
%C A328673 A partition with no two distinct parts relatively prime is said to be intersecting.
%H A328673 Fausto A. C. Cariboni, <a href="/A328673/b328673.txt">Table of n, a(n) for n = 0..350</a>
%F A328673 a(n > 0) = A200976(n) + 1.
%e A328673 The a(1) = 1 through a(10) = 9 partitions (A = 10):
%e A328673   1  2   3    4     5      6       7        8         9          A
%e A328673      11  111  22    11111  33      1111111  44        63         55
%e A328673               1111         42               62        333        64
%e A328673                            222              422       111111111  82
%e A328673                            111111           2222                 442
%e A328673                                             11111111             622
%e A328673                                                                  4222
%e A328673                                                                  22222
%e A328673                                                                  1111111111
%t A328673 Table[Length[Select[IntegerPartitions[n],And@@(GCD[##]>1&)@@@Subsets[Union[#],{2}]&]],{n,0,20}]
%Y A328673 The Heinz numbers of these partitions are A328867 (strict case is A318719).
%Y A328673 The relatively prime case is A328672.
%Y A328673 The strict case is A318717.
%Y A328673 The version for non-isomorphic multiset partitions is A319752.
%Y A328673 The version for set-systems is A305843.
%Y A328673 The version involving all parts (not just distinct ones) is A200976.
%Y A328673 Cf. A000837, A202425, A305148, A305854, A306006, A316476, A326910.
%K A328673 nonn
%O A328673 0,3
%A A328673 _Gus Wiseman_, Oct 29 2019