This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328675 #7 Nov 01 2019 18:41:15 %S A328675 1,1,2,2,3,3,4,5,6,8,9,13,13,22,23,30,36,50,54,77,85,113,135,170,194, %T A328675 256,303,369,440,545,640,792,931,1132,1347,1616,1909,2295,2712,3225, %U A328675 3799,4519,5310,6278,7365,8675,10170,11928,13940,16314,19046,22223,25856 %N A328675 Number of integer partitions of n with no two distinct consecutive parts divisible. %e A328675 The a(1) = 1 through a(10) = 9 partitions (A = 10). %e A328675 1 2 3 4 5 6 7 8 9 A %e A328675 11 111 22 32 33 43 44 54 55 %e A328675 1111 11111 222 52 53 72 64 %e A328675 111111 322 332 333 73 %e A328675 1111111 2222 432 433 %e A328675 11111111 522 532 %e A328675 3222 3322 %e A328675 111111111 22222 %e A328675 1111111111 %t A328675 Table[Length[Select[IntegerPartitions[n],!MatchQ[Union[#],{___,x_,y_,___}/;Divisible[y,x]]&]],{n,0,30}] %Y A328675 The Heinz numbers of these partitions are given by A328674. %Y A328675 The case involving all consecutive parts (not just distinct) is A328171. %Y A328675 The version for relative primality instead of divisibility is A328187. %Y A328675 Partitions with all consecutive parts divisible are A003238. %Y A328675 Compositions without consecutive divisibilities are A328460. %Y A328675 Cf. A305148, A316476, A318726, A328172, A328508, A328593, A328598, A328603. %K A328675 nonn %O A328675 0,3 %A A328675 _Gus Wiseman_, Oct 29 2019