cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328675 Number of integer partitions of n with no two distinct consecutive parts divisible.

This page as a plain text file.
%I A328675 #7 Nov 01 2019 18:41:15
%S A328675 1,1,2,2,3,3,4,5,6,8,9,13,13,22,23,30,36,50,54,77,85,113,135,170,194,
%T A328675 256,303,369,440,545,640,792,931,1132,1347,1616,1909,2295,2712,3225,
%U A328675 3799,4519,5310,6278,7365,8675,10170,11928,13940,16314,19046,22223,25856
%N A328675 Number of integer partitions of n with no two distinct consecutive parts divisible.
%e A328675 The a(1) = 1 through a(10) = 9 partitions (A = 10).
%e A328675   1  2   3    4     5      6       7        8         9          A
%e A328675      11  111  22    32     33      43       44        54         55
%e A328675               1111  11111  222     52       53        72         64
%e A328675                            111111  322      332       333        73
%e A328675                                    1111111  2222      432        433
%e A328675                                             11111111  522        532
%e A328675                                                       3222       3322
%e A328675                                                       111111111  22222
%e A328675                                                                  1111111111
%t A328675 Table[Length[Select[IntegerPartitions[n],!MatchQ[Union[#],{___,x_,y_,___}/;Divisible[y,x]]&]],{n,0,30}]
%Y A328675 The Heinz numbers of these partitions are given by A328674.
%Y A328675 The case involving all consecutive parts (not just distinct) is A328171.
%Y A328675 The version for relative primality instead of divisibility is A328187.
%Y A328675 Partitions with all consecutive parts divisible are A003238.
%Y A328675 Compositions without consecutive divisibilities are A328460.
%Y A328675 Cf. A305148, A316476, A318726, A328172, A328508, A328593, A328598, A328603.
%K A328675 nonn
%O A328675 0,3
%A A328675 _Gus Wiseman_, Oct 29 2019