cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328676 Number of relatively prime integer partitions of n whose distinct parts are pairwise indivisible.

This page as a plain text file.
%I A328676 #6 Nov 01 2019 18:41:23
%S A328676 1,1,1,1,2,1,4,3,5,5,11,7,16,14,18,22,34,30,47,45,59,66,89,90,118,125,
%T A328676 159,169,218,225,289,304,369,400,486,520,636,680,806,873,1051,1105,
%U A328676 1333,1424,1664,1803,2122,2253,2659,2841,3283,3560,4118,4388,5096
%N A328676 Number of relatively prime integer partitions of n whose distinct parts are pairwise indivisible.
%e A328676 The a(4) = 1 through a(11) = 11 partitions:
%e A328676   1111  32     111111  43       53        54         73          65
%e A328676         11111          52       332       72         433         74
%e A328676                        322      11111111  522        532         83
%e A328676                        1111111            3222       3322        92
%e A328676                                           111111111  1111111111  443
%e A328676                                                                  533
%e A328676                                                                  722
%e A328676                                                                  3332
%e A328676                                                                  5222
%e A328676                                                                  32222
%e A328676                                                                  11111111111
%t A328676 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
%t A328676 Table[Length[Select[IntegerPartitions[n],GCD@@#==1&&stableQ[#,Divisible]&]],{n,30}]
%Y A328676 The Heinz numbers of these partitions are given by A328677.
%Y A328676 The strict case is A328678.
%Y A328676 The binary index version is A328671.
%Y A328676 Relatively prime partitions are A000837.
%Y A328676 Partitions whose distinct parts are pairwise indivisible are A305148.
%Y A328676 Cf. A285573, A289509, A303362, A316476, A326912, A327393, A328171.
%K A328676 nonn
%O A328676 1,5
%A A328676 _Gus Wiseman_, Oct 29 2019