This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328676 #6 Nov 01 2019 18:41:23 %S A328676 1,1,1,1,2,1,4,3,5,5,11,7,16,14,18,22,34,30,47,45,59,66,89,90,118,125, %T A328676 159,169,218,225,289,304,369,400,486,520,636,680,806,873,1051,1105, %U A328676 1333,1424,1664,1803,2122,2253,2659,2841,3283,3560,4118,4388,5096 %N A328676 Number of relatively prime integer partitions of n whose distinct parts are pairwise indivisible. %e A328676 The a(4) = 1 through a(11) = 11 partitions: %e A328676 1111 32 111111 43 53 54 73 65 %e A328676 11111 52 332 72 433 74 %e A328676 322 11111111 522 532 83 %e A328676 1111111 3222 3322 92 %e A328676 111111111 1111111111 443 %e A328676 533 %e A328676 722 %e A328676 3332 %e A328676 5222 %e A328676 32222 %e A328676 11111111111 %t A328676 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A328676 Table[Length[Select[IntegerPartitions[n],GCD@@#==1&&stableQ[#,Divisible]&]],{n,30}] %Y A328676 The Heinz numbers of these partitions are given by A328677. %Y A328676 The strict case is A328678. %Y A328676 The binary index version is A328671. %Y A328676 Relatively prime partitions are A000837. %Y A328676 Partitions whose distinct parts are pairwise indivisible are A305148. %Y A328676 Cf. A285573, A289509, A303362, A316476, A326912, A327393, A328171. %K A328676 nonn %O A328676 1,5 %A A328676 _Gus Wiseman_, Oct 29 2019