This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328677 #5 Nov 01 2019 18:41:30 %S A328677 2,4,8,15,16,32,33,35,45,51,55,64,69,75,77,85,93,95,99,119,123,128, %T A328677 135,141,143,145,153,155,161,165,175,177,187,201,205,207,209,215,217, %U A328677 219,221,225,245,249,253,255,256,265,275,279,287,291,295,297,309,323 %N A328677 Numbers whose distinct prime indices are relatively prime and pairwise indivisible. %C A328677 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. Stable numbers are listed in A316476. %F A328677 Intersection of A316476 and A289509. %e A328677 The sequence of terms together with their prime indices begins: %e A328677 2: {1} %e A328677 4: {1,1} %e A328677 8: {1,1,1} %e A328677 15: {2,3} %e A328677 16: {1,1,1,1} %e A328677 32: {1,1,1,1,1} %e A328677 33: {2,5} %e A328677 35: {3,4} %e A328677 45: {2,2,3} %e A328677 51: {2,7} %e A328677 55: {3,5} %e A328677 64: {1,1,1,1,1,1} %e A328677 69: {2,9} %e A328677 75: {2,3,3} %e A328677 77: {4,5} %e A328677 85: {3,7} %e A328677 93: {2,11} %e A328677 95: {3,8} %e A328677 99: {2,2,5} %e A328677 119: {4,7} %t A328677 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A328677 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A328677 Select[Range[100],GCD@@primeMS[#]==1&&stableQ[primeMS[#],Divisible]&] %Y A328677 These are the Heinz numbers of the partitions counted by A328676. %Y A328677 Numbers whose prime indices are relatively prime are A289509. %Y A328677 Partitions whose distinct parts are pairwise indivisible are A305148. %Y A328677 The version for binary indices (instead of prime indices) is A328671. %Y A328677 Cf. A000837, A056239, A112798, A285573, A289508, A303362, A304713, A327393, A328460. %K A328677 nonn %O A328677 1,1 %A A328677 _Gus Wiseman_, Oct 30 2019