cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328678 Number of strict, pairwise indivisible, relatively prime integer partitions of n.

This page as a plain text file.
%I A328678 #6 Nov 01 2019 18:41:37
%S A328678 1,0,0,0,1,0,2,1,2,2,4,3,5,4,5,7,10,9,12,11,14,15,22,20,25,26,32,33,
%T A328678 44,41,54,49,62,67,80,80,100,100,118,121,152,148,179,178,210,219,267,
%U A328678 259,316,313,363,380,449,448,529,532,619,640,745,749,867,889
%N A328678 Number of strict, pairwise indivisible, relatively prime integer partitions of n.
%C A328678 Note that pairwise indivisibility implies strictness, but we include "strict" in the name in order to more clearly distinguish it from A328676 = "Number of relatively prime integer partitions of n whose distinct parts are pairwise indivisible".
%F A328678 Moebius transform of A303362.
%e A328678 The a(1) = 1 through a(20) = 11 partitions (A..H = 10..20) (empty columns not shown):
%e A328678   1  32  43  53  54  73   65  75   76  95   87   97   98    B7   A9    B9
%e A328678          52      72  532  74  543  85  B3   B4   B5   A7    D5   B8    D7
%e A328678                           83  732  94  743  D2   D3   B6    765  C7    H3
%e A328678                           92       A3  752  654  754  C5    873  D6    875
%e A328678                                    B2       753  853  D4    954  E5    965
%e A328678                                                  952  E3    972  F4    974
%e A328678                                                  B32  F2    B43  G3    A73
%e A328678                                                       764   B52  H2    B54
%e A328678                                                       A43   D32  865   B72
%e A328678                                                       7532       964   D43
%e A328678                                                                  B53   D52
%e A328678                                                                  7543
%t A328678 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
%t A328678 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&GCD@@#==1&&stableQ[#,Divisible]&]],{n,30}]
%Y A328678 The Heinz numbers of these partitions are the squarefree terms of A328677.
%Y A328678 The non-strict case is A328676.
%Y A328678 Pairwise indivisible partitions are A303362.
%Y A328678 Strict, relatively prime partitions are A078374.
%Y A328678 A ranking function using binary indices is A328671.
%Y A328678 Cf. A000837, A285572, A285573, A304713, A305148, A316476, A328171.
%K A328678 nonn
%O A328678 1,7
%A A328678 _Gus Wiseman_, Oct 30 2019