This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328678 #6 Nov 01 2019 18:41:37 %S A328678 1,0,0,0,1,0,2,1,2,2,4,3,5,4,5,7,10,9,12,11,14,15,22,20,25,26,32,33, %T A328678 44,41,54,49,62,67,80,80,100,100,118,121,152,148,179,178,210,219,267, %U A328678 259,316,313,363,380,449,448,529,532,619,640,745,749,867,889 %N A328678 Number of strict, pairwise indivisible, relatively prime integer partitions of n. %C A328678 Note that pairwise indivisibility implies strictness, but we include "strict" in the name in order to more clearly distinguish it from A328676 = "Number of relatively prime integer partitions of n whose distinct parts are pairwise indivisible". %F A328678 Moebius transform of A303362. %e A328678 The a(1) = 1 through a(20) = 11 partitions (A..H = 10..20) (empty columns not shown): %e A328678 1 32 43 53 54 73 65 75 76 95 87 97 98 B7 A9 B9 %e A328678 52 72 532 74 543 85 B3 B4 B5 A7 D5 B8 D7 %e A328678 83 732 94 743 D2 D3 B6 765 C7 H3 %e A328678 92 A3 752 654 754 C5 873 D6 875 %e A328678 B2 753 853 D4 954 E5 965 %e A328678 952 E3 972 F4 974 %e A328678 B32 F2 B43 G3 A73 %e A328678 764 B52 H2 B54 %e A328678 A43 D32 865 B72 %e A328678 7532 964 D43 %e A328678 B53 D52 %e A328678 7543 %t A328678 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A328678 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&GCD@@#==1&&stableQ[#,Divisible]&]],{n,30}] %Y A328678 The Heinz numbers of these partitions are the squarefree terms of A328677. %Y A328678 The non-strict case is A328676. %Y A328678 Pairwise indivisible partitions are A303362. %Y A328678 Strict, relatively prime partitions are A078374. %Y A328678 A ranking function using binary indices is A328671. %Y A328678 Cf. A000837, A285572, A285573, A304713, A305148, A316476, A328171. %K A328678 nonn %O A328678 1,7 %A A328678 _Gus Wiseman_, Oct 30 2019