This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328679 #4 Nov 01 2019 18:41:47 %S A328679 1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,17719,32768, %T A328679 40807,43381,50431,65536,74269,83143,101543,105703,116143,121307, %U A328679 123469,131072,139919,140699,142883,171613,181831,185803,191479,203557,205813,211381,213239 %N A328679 Heinz numbers of integer partitions with no two distinct parts relatively prime, but with no divisor in common to all of the parts. %C A328679 Equals the union A000079 and A328868. %C A328679 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A328679 A partition with no two distinct parts relatively prime is said to be intersecting. %e A328679 The sequence of terms together with their prime indices begins: %e A328679 1: {} %e A328679 2: {1} %e A328679 4: {1,1} %e A328679 8: {1,1,1} %e A328679 16: {1,1,1,1} %e A328679 32: {1,1,1,1,1} %e A328679 64: {1,1,1,1,1,1} %e A328679 128: {1,1,1,1,1,1,1} %e A328679 256: {1,1,1,1,1,1,1,1} %e A328679 512: {1,1,1,1,1,1,1,1,1} %e A328679 1024: {1,1,1,1,1,1,1,1,1,1} %e A328679 2048: {1,1,1,1,1,1,1,1,1,1,1} %e A328679 4096: {1,1,1,1,1,1,1,1,1,1,1,1} %e A328679 8192: {1,1,1,1,1,1,1,1,1,1,1,1,1} %e A328679 16384: {1,1,1,1,1,1,1,1,1,1,1,1,1,1} %e A328679 17719: {6,10,15} %e A328679 32768: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} %e A328679 40807: {6,14,21} %e A328679 43381: {6,15,20} %e A328679 50431: {10,12,15} %e A328679 65536: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} %t A328679 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A328679 Select[Range[10000],#==1||GCD@@primeMS[#]==1&&And[And@@(GCD[##]>1&)@@@Subsets[Union[primeMS[#]],{2}]]&] %Y A328679 These are the Heinz numbers of the partitions counted by A328672. %Y A328679 Terms that are not powers of 2 are A328868. %Y A328679 The strict case is A318716. %Y A328679 The version without global relative primality is A328867. %Y A328679 A ranking using binary indices (instead of prime indices) is A326912. %Y A328679 The version for non-isomorphic multiset partitions is A319759. %Y A328679 The version for divisibility (instead of relative primality) is A328677. %Y A328679 Heinz numbers of relatively prime partitions are A289509. %Y A328679 Cf. A000837, A056239, A112798, A200976, A202425, A289509, A291166, A302796, A316476, A318715, A319752, A328336. %K A328679 nonn %O A328679 1,2 %A A328679 _Gus Wiseman_, Oct 30 2019