cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328679 Heinz numbers of integer partitions with no two distinct parts relatively prime, but with no divisor in common to all of the parts.

This page as a plain text file.
%I A328679 #4 Nov 01 2019 18:41:47
%S A328679 1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,17719,32768,
%T A328679 40807,43381,50431,65536,74269,83143,101543,105703,116143,121307,
%U A328679 123469,131072,139919,140699,142883,171613,181831,185803,191479,203557,205813,211381,213239
%N A328679 Heinz numbers of integer partitions with no two distinct parts relatively prime, but with no divisor in common to all of the parts.
%C A328679 Equals the union A000079 and A328868.
%C A328679 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A328679 A partition with no two distinct parts relatively prime is said to be intersecting.
%e A328679 The sequence of terms together with their prime indices begins:
%e A328679       1: {}
%e A328679       2: {1}
%e A328679       4: {1,1}
%e A328679       8: {1,1,1}
%e A328679      16: {1,1,1,1}
%e A328679      32: {1,1,1,1,1}
%e A328679      64: {1,1,1,1,1,1}
%e A328679     128: {1,1,1,1,1,1,1}
%e A328679     256: {1,1,1,1,1,1,1,1}
%e A328679     512: {1,1,1,1,1,1,1,1,1}
%e A328679    1024: {1,1,1,1,1,1,1,1,1,1}
%e A328679    2048: {1,1,1,1,1,1,1,1,1,1,1}
%e A328679    4096: {1,1,1,1,1,1,1,1,1,1,1,1}
%e A328679    8192: {1,1,1,1,1,1,1,1,1,1,1,1,1}
%e A328679   16384: {1,1,1,1,1,1,1,1,1,1,1,1,1,1}
%e A328679   17719: {6,10,15}
%e A328679   32768: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
%e A328679   40807: {6,14,21}
%e A328679   43381: {6,15,20}
%e A328679   50431: {10,12,15}
%e A328679   65536: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
%t A328679 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A328679 Select[Range[10000],#==1||GCD@@primeMS[#]==1&&And[And@@(GCD[##]>1&)@@@Subsets[Union[primeMS[#]],{2}]]&]
%Y A328679 These are the Heinz numbers of the partitions counted by A328672.
%Y A328679 Terms that are not powers of 2 are A328868.
%Y A328679 The strict case is A318716.
%Y A328679 The version without global relative primality is A328867.
%Y A328679 A ranking using binary indices (instead of prime indices) is A326912.
%Y A328679 The version for non-isomorphic multiset partitions is A319759.
%Y A328679 The version for divisibility (instead of relative primality) is A328677.
%Y A328679 Heinz numbers of relatively prime partitions are A289509.
%Y A328679 Cf. A000837, A056239, A112798, A200976, A202425, A289509, A291166, A302796, A316476, A318715, A319752, A328336.
%K A328679 nonn
%O A328679 1,2
%A A328679 _Gus Wiseman_, Oct 30 2019