cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328685 Row sums of A309038.

This page as a plain text file.
%I A328685 #20 Sep 09 2021 11:18:28
%S A328685 0,4,28,120,320,716,1380,2464,3984,6196,9124,13128,18048,24476,32244,
%T A328685 42096,53440,67460,83604,103192,124944,150892,179908,214080,251184,
%U A328685 294356,341700,396264,454624,521276,593364,675088,761568,858916,963124,1079736,1202160,1338380
%N A328685 Row sums of A309038.
%C A328685 All the terms are even.
%H A328685 Stefano Spezia, <a href="/A328685/b328685.txt">Table of n, a(n) for n = 0..100</a>
%F A328685 Conjectures from _Colin Barker_, Oct 25 2019: (Start)
%F A328685 G.f.: 4*x*(1 + 5*x + 17*x^2 + 27*x^3 + 46*x^4 + 52*x^5 + 54*x^6 + 28*x^7 + 29*x^8 - 7*x^9+ 5*x^10 - 17*x^11 + 4*x^12 - 6*x^13 + 12*x^14 - 14*x^15 + 8*x^16 - 4*x^17) / ((1 - x)^5*(1 + x)^3*(1 + x^2)^3).
%F A328685 a(n) = 2*a(n-1) - a(n-2) + 3*a(n-4) - 6*a(n-5) + 3*a(n-6) - 3*a(n-8) + 6*a(n-9) - 3*a(n-10) + a(n-12) - 2*a(n-13) + a(n-14) for n > 18.
%F A328685 (End)
%F A328685 a(n) ~ 5*n^4/8. - Conjectured by _Stefano Spezia_, Sep 08 2021
%t A328685 (* The function T is defined in A309038. *)
%t A328685 Flatten[Table[Sum[T[n, k], {k, 0, n^2}], {n, 0, 37}]]
%Y A328685 Cf. A000583, A309038, A326118, A327479, A327480.
%K A328685 nonn
%O A328685 0,2
%A A328685 _Stefano Spezia_, Oct 25 2019