This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328694 #13 Jun 28 2024 01:20:44 %S A328694 1,4,27,257,3156,47442,843352,17300943,402210240,10448526896, %T A328694 299925224064,9426724628301,321959469056512,11872685912032350, %U A328694 470132249600142336,19895288956008203963,896055382220853362688,42793946679993786078108,2160123874888094765056000 %N A328694 a(n) = sum of lead terms of all parking functions of length n. %H A328694 Andrew Howroyd, <a href="/A328694/b328694.txt">Table of n, a(n) for n = 1..200</a> %H A328694 Spencer Daugherty, Pamela E. Harris, Ian Klein, and Matt McClinton, <a href="https://arxiv.org/abs/2406.12941">Metered Parking Functions</a>, arXiv:2406.12941 [math.CO], 2024. See pp. 18, 22. %F A328694 a(n) = Sum_{k=1..n} k*A298592(n,k). %F A328694 a(n) = A318047(n) / n. %e A328694 Case n = 2: There are 3 parking functions of length 2: [1, 1], [1, 2], [2, 1]. Summing up the initial values gives 1 + 1 + 2 = 4, so a(2) = 4. %o A328694 (PARI) \\ here T(n,k) is A298592(n,k). %o A328694 T(n, k)={sum(j=k, n, binomial(n-1, j-1)*j^(j-2)*(n+1-j)^(n-1-j))} %o A328694 a(n)={sum(k=1, n, k*T(n, k))} %Y A328694 Cf. A298592, A318047. %K A328694 nonn %O A328694 1,2 %A A328694 _Andrew Howroyd_, Oct 25 2019