This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328695 #10 Oct 31 2019 21:42:40 %S A328695 1,4,2,17,9,3,72,38,5,12,305,161,8,51,6,1292,682,13,216,10,7,5473, %T A328695 2889,21,915,16,30,14,23184,12238,34,3876,26,127,59,25,98209,51841,55, %U A328695 16419,42,538,250,106,11,416020,219602,89,69552,68,2279,1059,449,18,33 %N A328695 Rectangular array R read by descending antidiagonals: divide to each even term of the Wythoff array (A035513) by 2, and delete all others. %C A328695 Every positive integer occurs exactly once in R, and every row of R is a linear recurrence sequence. The appearance of a sequence s(r) below means that corresponding row of R is the same as s(r) except possibly for one or more initial terms of s(r). %C A328695 Row 1 of R: A001076 %C A328695 Row 2 of R: A001077 %C A328695 Row 3 of R: A000045 %C A328695 Row 4 of R: A115179 %C A328695 Row 5 of R: A006355 %C A328695 Row 6 of R: A097924 %C A328695 Row 8 of R: A048875 %C A328695 Row 9 of R: A000032 %e A328695 Row 1 of the Wythoff array is (1,2,3,5,8,13,21,34,55,89,144,...), so that row 1 of R is (1,4,17,72,...). %e A328695 _______________ %e A328695 Northwest corner of R: %e A328695 1 4 17 72 305 1292 5473 %e A328695 2 9 38 161 682 2889 12238 %e A328695 3 5 8 13 21 34 55 %e A328695 12 51 216 915 3876 16419 69552 %e A328695 6 10 16 26 42 68 110 %e A328695 7 30 127 538 2279 9654 40895 %t A328695 w[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k]; %t A328695 Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten; %t A328695 q[n_, k_] := If[Mod[w[n, k], 2] == 0, w[n, k]/2, 0]; %t A328695 t[n_] := Union[Table[q[n, k], {k, 1, 50}]]; %t A328695 u[n_] := If[First[t[n]] == 0, Rest[t[n]], t[n]] %t A328695 Table[u[n], {n, 1, 10}] (* A328695 array *) %t A328695 v[n_, k_] := u[n][[k]]; %t A328695 Table[v[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* A328695 sequence *) %Y A328695 Cf. A035513, A001076, A001077, A000045, A115179, A006355, A097924, A048875, A000032, A328696, A328697. %K A328695 nonn,tabl %O A328695 1,2 %A A328695 _Clark Kimberling_, Oct 26 2019