A328696 Rectangular array R read by descending antidiagonals: apply x -> (x+1)/2 to each odd term of the Wythoff array (A035513), and delete all others.
1, 2, 4, 3, 6, 5, 7, 15, 8, 12, 11, 24, 20, 19, 9, 28, 62, 32, 49, 23, 10, 45, 100, 83, 79, 37, 16, 13, 117, 261, 134, 206, 96, 41, 21, 14, 189, 422, 350, 333, 155, 66, 54, 36, 25, 494, 1104, 566, 871, 405, 172, 87, 58, 40, 17, 799, 1786, 1481, 1409, 655
Offset: 1
Examples
Row 1 of the Wythoff array is (1,2,3,5,8,13,21,34,55,89,144,...), so that row 1 of R is (1,2,3,7,11,...) = A107857 (essentially). _______________ Northwest corner of R: 1, 2, 3, 7, 11, 28, 45, 117, 189, 494, 799 4, 6, 15, 24, 62, 100, 261, 422, 1104, 1786, 4675 5, 8, 20, 32, 83, 134, 350, 566, 1481, 2396, 6272 12, 19, 49, 79, 206, 333, 871, 1409, 3688, 5967, 15621 9, 23, 37, 96, 155, 405, 655, 1714, 2773, 7259, 11745 10, 16, 41, 66, 172, 278, 727, 1176, 3078, 4980, 13037 13, 21, 54, 87, 227, 367, 960, 1553, 4065, 6577, 17218
Programs
-
Mathematica
w[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k]; Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten; q[n_, k_] := If[Mod[w[n, k], 2] == 1, (1 + w[n, k])/2, 0]; t[n_] := Union[Table[q[n, k], {k, 1, 50}]]; u[n_] := If[First[t[n]] == 0, Rest[t[n]], t[n]] s = Select[Range[40], ! u[#] == {} &]; u1[n_] := u[s[[n]]]; Column[Table[u1[n], {n, 1, 10}]] (* A328696 array *) v[n_, k_] := u1[n][[k]]; Table[v[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* A328696 sequence *)
Comments