A328703 Numbers k dividing nonzero terms in A002065.
1, 3, 13, 39, 61, 151, 169, 183, 211, 223, 453, 507, 633, 669, 739, 793, 1009, 1531, 1963, 2197, 2217, 2379, 2743, 2899, 3027, 3721, 4363, 4513, 4593, 5503, 5889, 6277, 6397, 6591, 7753, 7873, 8229, 8697, 9211, 9463, 9607, 10309, 11163, 11353, 11587, 11677, 12007, 12241, 12871
Offset: 1
Keywords
Examples
61 divides A002065(7) = 61, so 61 is in this sequence. In addition, 61 divides A002065(m) if and only if 4 divides m. 31 is not a term: {A002065(n) mod 31} = {0, 1, 3, 13, 28, 7, 26, 21, 29, 3, 13, 28, 7, 26, 21, 29, ...}, so 31 does not divides A002065(m) for any m > 0.
Programs
-
PARI
v(n) = my(v=[0],k,flag=1); for(i=2, n+1, k=(v[#v]^2+v[#v]+1)%n; v=concat(v, k); for(j=1, i-1, if(v[j]==k, flag=0)); if(flag==0, break())); v a(n) = !(v(n)[#v(n)])
Comments