A328708 Number of non-primitive Pythagorean triples with leg n.
0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 2, 2, 0, 2, 0, 2, 2, 1, 0, 5, 1, 1, 2, 2, 0, 4, 0, 3, 2, 1, 2, 5, 0, 1, 2, 5, 0, 4, 0, 2, 5, 1, 0, 8, 1, 2, 2, 2, 0, 3, 2, 5, 2, 1, 0, 9, 0, 1, 5, 4, 2, 4, 0, 2, 2, 4, 0, 10, 0, 1, 5, 2, 2, 4, 0, 8, 3, 1, 0, 9, 2, 1, 2, 5, 0, 7, 2, 2, 2, 1, 2, 11, 0, 2, 5, 5, 0, 4
Offset: 1
Keywords
Examples
n=3 as leg in only one primitive Pythagorean triple, (3,4,5); so a(3)=0. n=6 as leg in only one non-primitive Pythagorean triple, (6,8,10); so a(6)=1. n=8 as leg in one primitive Pythagorean triple (8,15,17) and in one non-primitive Pythagorean triple (6,8,10); so a(8)=1.
References
- A. Beiler, Recreations in the Theory of Numbers. New York: Dover Publications, pp. 116-117, 1966.
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000
Comments