A328717 Decimal expansion of Sum_{k>=1} Kronecker(5,k)/k^2.
7, 0, 6, 2, 1, 1, 4, 0, 3, 2, 5, 9, 7, 4, 0, 9, 6, 9, 9, 3, 1, 0, 0, 3, 1, 7, 5, 7, 6, 2, 5, 6, 4, 0, 2, 7, 6, 6, 0, 2, 4, 6, 4, 7, 1, 8, 5, 2, 9, 4, 6, 8, 6, 3, 9, 4, 2, 1, 1, 7, 4, 0, 2, 1, 6, 5, 6, 7, 7, 6, 0, 4, 4, 3, 8, 3, 8, 3, 0, 0, 7, 6, 8, 3, 3, 7, 4, 5, 6, 6, 4
Offset: 0
Examples
1 - 1/2^2 - 1/3^2 + 1/4^2 + 1/6^2 - 1/7^2 - 1/8^2 + 1/9^2 + ... = 4*Pi^2/(25*sqrt(5)) = 0.70621140325974096993100317576256402766024647185294...
Links
- M. W. Coffey, Summatory relations and prime products for the Stieltjes constants and other related results, arXiv:1701.07064 [math.NT], 2017, eq. (2.1).
- H.-J. Seiffert, Problem B-705, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 29, No. 4 (1991), p. 372; An Application of a Series Expansion for (arcsinx)^2, Solution to Problem B-705, ibid., Vol. 31, No. 1 (1993), pp. 85-86.
- Eric Weisstein's World of Mathematics, Dirichlet L-Series.
- Eric Weisstein's World of Mathematics, Polygamma Function.
Crossrefs
Programs
-
Mathematica
RealDigits[4*Pi^2/(25*Sqrt[5]), 10, 102] // First
-
PARI
default(realprecision, 100); 4*Pi^2/(25*sqrt(5))
Formula
Equals 4*Pi^2/(25*sqrt(5)).
Equals (zeta(2,1/5) - zeta(2,2/5) - zeta(2,3/5) + zeta(2,4/5))/25, where zeta(s,a) is the Hurwitz zeta function.
Equals (polylog(2,u) - polylog(2,u^2) - polylog(2,u^3) + polylog(2,u^4))/sqrt(5), where u = exp(2*Pi*i/5) is a 5th primitive root of unity, i = sqrt(-1).
Equals (polygamma(1,1/5) - polygamma(1,2/5) - polygamma(1,3/5) - polygamma(1,4/5))/25.
Equals Sum_{k>=1} Fibonacci(2*k)/(k^2*binomial(2*k,k)) = Sum_{k>=1} A001906(k)/A002736(k) (Seiffert, 1991). - Amiram Eldar, Jan 17 2022
Equals 1/(Product_{p prime == 1 or 4 (mod 5)} (1 - 1/p^2) * Product_{p prime == 2 or 3 (mod 5)} (1 + 1/p^2)). - Amiram Eldar, Dec 17 2023
Comments