cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328721 Dirichlet g.f.: Product_{p prime, k>=1} (1 + p^(-s*k)) / (1 - p^(-s*k)).

This page as a plain text file.
%I A328721 #4 Oct 26 2019 10:02:25
%S A328721 1,2,2,4,2,4,2,8,4,4,2,8,2,4,4,14,2,8,2,8,4,4,2,16,4,4,8,8,2,8,2,24,4,
%T A328721 4,4,16,2,4,4,16,2,8,2,8,8,4,2,28,4,8,4,8,2,16,4,16,4,4,2,16,2,4,8,40,
%U A328721 4,8,2,8,4,8,2,32,2,4,8,8,4,8,2,28
%N A328721 Dirichlet g.f.: Product_{p prime, k>=1} (1 + p^(-s*k)) / (1 - p^(-s*k)).
%C A328721 Dirichlet convolution of A000688 with A050361.
%F A328721 a(n) = Sum_{d|n} A000688(n/d) * A050361(d).
%F A328721 If n = Product (p_j^k_j) then a(n) = Product (A015128(k_j)).
%t A328721 Table[DivisorSum[n, (Times @@ PartitionsP[Last /@ FactorInteger[n/#]]) (Times @@ PartitionsQ[Last /@ FactorInteger[#]]) &], {n, 1, 80}]
%Y A328721 Cf. A000688, A015128, A050361.
%K A328721 nonn,mult
%O A328721 1,2
%A A328721 _Ilya Gutkovskiy_, Oct 26 2019