A328723 Decimal expansion of Sum_{k>=1} Kronecker(5,k)/k^3.
8, 5, 4, 8, 2, 4, 7, 6, 6, 6, 4, 8, 5, 4, 3, 0, 1, 0, 2, 3, 5, 6, 9, 0, 0, 8, 3, 5, 3, 8, 1, 3, 7, 6, 9, 7, 1, 3, 8, 3, 9, 6, 4, 6, 4, 9, 3, 7, 0, 0, 5, 2, 8, 2, 7, 3, 0, 7, 0, 2, 4, 9, 9, 3, 8, 1, 1, 2, 3, 8, 3, 3, 4, 1, 2, 6, 8, 9, 4, 2, 8, 1, 2, 8, 4, 2, 0, 9, 5, 6, 7
Offset: 0
Examples
1 - 1/2^3 - 1/3^3 + 1/4^3 + 1/6^3 - 1/7^3 - 1/8^3 + 1/9^3 + ... = 0.8548247666...
Links
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 99.
- Eric Weisstein's World of Mathematics, Dirichlet L-Series.
- Eric Weisstein's World of Mathematics, Polygamma Function.
Crossrefs
Programs
-
Mathematica
(PolyGamma[2, 1/5] - PolyGamma[2, 2/5] - PolyGamma[2, 3/5] + PolyGamma[2, 4/5])/(-250) // RealDigits[#, 10, 102] & // First
Formula
Equals (zeta(3,1/5) - zeta(3,2/5) - zeta(3,3/5) + zeta(3,4/5))/25, where zeta(s,a) is the Hurwitz zeta function.
Equals (polylog(3,u) - polylog(3,u^2) - polylog(3,u^3) + polylog(3,u^4))/sqrt(5), where u = exp(2*Pi*i/5) is a 5th primitive root of unity, i = sqrt(-1).
Equals (polygamma(2,1/5) - polygamma(2,2/5) - polygamma(2,3/5) - polygamma(2,4/5))/(-250).
Equals 1/(Product_{p prime == 1 or 4 (mod 5)} (1 - 1/p^3) * Product_{p prime == 2 or 3 (mod 5)} (1 + 1/p^3)). - Amiram Eldar, Dec 17 2023
Comments