cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328771 Minimal number of primorials (A002110) that add to A328768(n), where A328768 is the first primorial based variant of arithmetic derivative.

This page as a plain text file.
%I A328771 #8 Oct 28 2019 20:01:16
%S A328771 0,0,1,1,2,1,2,1,2,2,5,1,4,1,4,6,2,1,3,1,4,6,6,1,6,2,5,5,10,1,6,1,6,8,
%T A328771 7,8,6,1,6,8,6,1,5,1,8,7,8,1,6,2,9,6,10,1,8,8,8,6,9,1,10,1,4,9,8,10,
%U A328771 13,1,8,8,14,1,10,1,5,5,10,12,10,1,6,2,7,1,8,10,6,10,14,1,5,14,8,6,8,12,6,1,9,15,8,1,16,1,14,7
%N A328771 Minimal number of primorials (A002110) that add to A328768(n), where A328768 is the first primorial based variant of arithmetic derivative.
%H A328771 Antti Karttunen, <a href="/A328771/b328771.txt">Table of n, a(n) for n = 0..32768</a>
%H A328771 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>
%F A328771 a(n) = A276150(A328768(n)).
%o A328771 (PARI)
%o A328771 A002110(n) = prod(i=1,n,prime(i));
%o A328771 A328768(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*A002110(primepi(f[i,1])-1)/f[i, 1]));
%o A328771 A276150(n) = { my(s=0, p=2, d); while(n, d = (n%p); s += d; n = (n-d)/p; p = nextprime(1+p)); (s); };
%o A328771 A328771(n) = A276150(A328768(n));
%Y A328771 Cf. A002110, A276150, A324888, A328768, A328772.
%K A328771 nonn
%O A328771 0,5
%A A328771 _Antti Karttunen_, Oct 28 2019