A329105
a(n) = (Sum_{k=0..n-1} (1435*k+113)*3240^(n-1-k)*T_k(7,1)*T_k(10,10)^2)/(n*10^(n-1)), where T_k(b,c) denotes the coefficient of x^k in the expansion of (x^2+b*x+c)^k.
Original entry on oeis.org
113, 72486, 22959360, 6667719680, 1907342690028, 546566353351560, 157644511058113920, 45818502502241488320, 13418569988503429983660, 3957929725047766692949256, 1175070020071246825359359232, 350933963579387124964687828224, 105365902497675176184788931496400, 31787539718100094004136084118514400
Offset: 1
a(1) = 113 since ((1435*0+113)*3240^(1-1-0)*T_0(7,1)*T_0(10,10)^2)/(1*10^(1-1)) = 113.
- Zhi-Wei Sun, Table of n, a(n) for n = 1..70
- Zhi-Wei Sun, Congruences involving generalized central trinomial coefficients, Sci. China Math. 57(2014), no.7, 1375-1400.
- Zhi-Wei Sun, On sums related to central binomial and trinomial coefficients, in: M. B. Nathanson (ed.), Combinatorial and Additive Number Theory: CANT 2011 and 2012, Springer Proc. in Math. & Stat., Vol. 101, Springer, New York, 2014, pp. 257-312. Also available from arXiv:1101.0600 [math.NT], 2011-2014.
-
T[b_,c_,0]=1;T[b_,c_,1]=b;
T[b_,c_,n_]:=T[b,c,n]=(b(2n-1)T[b,c,n-1]-(b^2-4c)(n-1)T[b,c,n-2])/n;
a[n_]:=a[n]=Sum[(1435k+113)T[7,1,k]T[10,10,k]^2*3240^(n-1-k),{k,0,n-1}]/(n*10^(n-1));
Table[a[n],{n,1,14}]
A329107
a(n) = (Sum_{k=0..n-1}(840*k+197)(-1)^k*2430^(n-1-k)*T_k(8,1)*T_k(5,-5)^2)/(n*5^(n-1)), where T_k(b,c) denotes the coefficient of x^k in the expansion of (x^2+b*x+c)^k.
Original entry on oeis.org
197, 27131, 9162090, 3337679905, 1300603606702, 526423563257310, 219304133423593380, 93259079677243221345, 40287972095635400291790, 17621949843841860346761946, 7785698346885200295051911308, 3468528609790576968835453926954, 1556035297261133424003013368953900
Offset: 1
a(1) = 197 since (840*0+197)*T_0(8,1)*T_0(5,-5)^2*(-1)^0*2430^(1-1-0)/(1*5^(1-1)) = 197.
- Zhi-Wei Sun, Table of n, a(n) for n = 1..70
- Zhi-Wei Sun, List of conjectural series for powers of Pi and other constants, arXiv:1102.5649 [math.CA], 2011-2014.
- Zhi-Wei Sun, Congruences involving generalized central trinomial coefficients, Sci. China Math. 57(2014), no.7, 1375-1400.
- Zhi-Wei Sun, On sums related to central binomial and trinomial coefficients, in: M. B. Nathanson (ed.), Combinatorial and Additive Number Theory: CANT 2011 and 2012, Springer Proc. in Math. & Stat., Vol. 101, Springer, New York, 2014, pp. 257-312. Also available from arXiv:1101.0600 [math.NT], 2011-2014.
-
T[b_,c_,0]=1; T[b_,c_,1]=b;
T[b_,c_,n_]:=T[b,c,n]=(b(2n-1)T[b,c,n-1]-(b^2-4c)(n-1)T[b,c,n-2])/n;
a[n_]:=a[n]=Sum[(840k+197)T[8,1,k]T[5,-5,k]^2*(-1)^k*2430^(n-1-k),{k,0,n-1}]/(n*5^(n-1));
Table[a[n],{n,1,13}]
Showing 1-2 of 2 results.
Comments