cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328804 The maximum value of j + k where j and k are positive integers with j^2 + k^2 = A001481(n).

This page as a plain text file.
%I A328804 #24 Sep 09 2022 11:07:17
%S A328804 0,1,2,2,3,4,3,4,5,4,5,6,6,7,6,7,8,8,6,7,8,9,9,7,10,10,9,10,11,8,11,
%T A328804 10,12,11,12,12,9,10,13,13,12,13,14,14,11,12,14,13,15,14,15,11,12,15,
%U A328804 16,16,16,15,12,17,16,14,17,15,17,16,18,18,17,18,15,16
%N A328804 The maximum value of j + k where j and k are positive integers with j^2 + k^2 = A001481(n).
%H A328804 Peter Kagey, <a href="/A328804/b328804.txt">Table of n, a(n) for n = 1..10000</a>
%e A328804 For n = 14, A001481(14) = 25 = 0^2 + 5^2 = 3^2 + 4^2, so a(14) = max{0+5, 3+4} = 7.
%o A328804 (Python)
%o A328804 from itertools import count, islice
%o A328804 from sympy.solvers.diophantine.diophantine import diop_DN
%o A328804 from sympy import factorint
%o A328804 def A328804_gen(): # generator of terms
%o A328804     return map(lambda n: max((a+b for a, b in diop_DN(-1,n))), filter(lambda n:(lambda m:all(d&3!=3 or m[d]&1==0 for d in m))(factorint(n)), count(0)))
%o A328804 A328804_list = list(islice(A328804_gen(),30)) # _Chai Wah Wu_, Sep 09 2022
%Y A328804 Cf. A000161, A001481, A328803.
%K A328804 nonn
%O A328804 1,3
%A A328804 _Peter Kagey_, Oct 27 2019