This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328847 #6 Oct 28 2019 20:01:37 %S A328847 0,0,1,1,2,1,2,1,3,3,2,1,3,1,4,3,3,1,4,1,3,4,4,1,3,3,3,4,4,1,3,1,4,3, %T A328847 5,3,3,1,5,4,3,1,4,1,3,3,4,1,3,4,3,3,6,1,5,3,4,5,4,1,3,1,5,3,4,4,2,1, %U A328847 5,6,2,1,3,1,4,3,5,5,5,1,3,5,5,1,3,7,5,4,3,1,3,5,5,5,4,6,4,1,3,4,5,1,7,1,6,5 %N A328847 Number of terms in Zeckendorf expansion needed to write the first Fibonacci based variant of arithmetic derivative of n. %H A328847 Antti Karttunen, <a href="/A328847/b328847.txt">Table of n, a(n) for n = 0..20000</a> %F A328847 a(n) = A007895(A328845(n)). %F A328847 a(p) = 1 for all primes p. %o A328847 (PARI) %o A328847 A328845(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*fibonacci(f[i,1])/f[i, 1])); %o A328847 A007895(n) = { my(s=0); while(n>0, s++; n -= fibonacci(1+A072649(n))); (s); } %o A328847 A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649 %o A328847 A328847(n) = A007895(A328845(n)); %Y A328847 Cf. A000045, A007895, A324907, A328845. %K A328847 nonn %O A328847 0,5 %A A328847 _Antti Karttunen_, Oct 28 2019