cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328847 Number of terms in Zeckendorf expansion needed to write the first Fibonacci based variant of arithmetic derivative of n.

This page as a plain text file.
%I A328847 #6 Oct 28 2019 20:01:37
%S A328847 0,0,1,1,2,1,2,1,3,3,2,1,3,1,4,3,3,1,4,1,3,4,4,1,3,3,3,4,4,1,3,1,4,3,
%T A328847 5,3,3,1,5,4,3,1,4,1,3,3,4,1,3,4,3,3,6,1,5,3,4,5,4,1,3,1,5,3,4,4,2,1,
%U A328847 5,6,2,1,3,1,4,3,5,5,5,1,3,5,5,1,3,7,5,4,3,1,3,5,5,5,4,6,4,1,3,4,5,1,7,1,6,5
%N A328847 Number of terms in Zeckendorf expansion needed to write the first Fibonacci based variant of arithmetic derivative of n.
%H A328847 Antti Karttunen, <a href="/A328847/b328847.txt">Table of n, a(n) for n = 0..20000</a>
%F A328847 a(n) = A007895(A328845(n)).
%F A328847 a(p) = 1 for all primes p.
%o A328847 (PARI)
%o A328847 A328845(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*fibonacci(f[i,1])/f[i, 1]));
%o A328847 A007895(n) = { my(s=0); while(n>0, s++; n -= fibonacci(1+A072649(n))); (s); }
%o A328847 A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
%o A328847 A328847(n) = A007895(A328845(n));
%Y A328847 Cf. A000045, A007895, A324907, A328845.
%K A328847 nonn
%O A328847 0,5
%A A328847 _Antti Karttunen_, Oct 28 2019