cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328848 Number of terms in Zeckendorf expansion needed to write the second Fibonacci based variant of arithmetic derivative of n.

This page as a plain text file.
%I A328848 #5 Oct 29 2019 21:06:09
%S A328848 0,0,1,1,1,1,3,1,2,2,3,1,2,1,3,3,3,1,4,1,2,3,3,1,3,3,2,3,5,1,2,1,3,4,
%T A328848 2,4,1,1,3,2,3,1,4,1,5,5,5,1,3,3,3,3,4,1,5,4,6,4,4,1,3,1,4,5,3,3,4,1,
%U A328848 3,4,3,1,5,1,6,4,5,3,4,1,3,3,6,1,4,3,6,6,6,1,5,3,5,5,4,5,3,1,2,5,3,1,4,1,4,3
%N A328848 Number of terms in Zeckendorf expansion needed to write the second Fibonacci based variant of arithmetic derivative of n.
%H A328848 Antti Karttunen, <a href="/A328848/b328848.txt">Table of n, a(n) for n = 0..20000</a>
%F A328848 a(n) = A007895(A328846(n)).
%o A328848 (PARI)
%o A328848 A328846(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*fibonacci(2+primepi(f[i,1]))/f[i, 1]));
%o A328848 A007895(n) = { my(s=0); while(n>0, s++; n -= fibonacci(1+A072649(n))); (s); }
%o A328848 A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
%o A328848 A328848(n) = A007895(A328846(n));
%Y A328848 Cf. A000045, A007895, A324905, A328846, A328847.
%K A328848 nonn
%O A328848 0,7
%A A328848 _Antti Karttunen_, Oct 29 2019