cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328854 Dirichlet g.f.: Product_{p prime} 1 / (1 - 2 * p^(-s))^2.

This page as a plain text file.
%I A328854 #14 Aug 22 2021 08:49:16
%S A328854 1,4,4,12,4,16,4,32,12,16,4,48,4,16,16,80,4,48,4,48,16,16,4,128,12,16,
%T A328854 32,48,4,64,4,192,16,16,16,144,4,16,16,128,4,64,4,48,48,16,4,320,12,
%U A328854 48,16,48,4,128,16,128,16,16,4,192,4,16,48,448,16,64,4,48,16,64,4,384,4,16,48
%N A328854 Dirichlet g.f.: Product_{p prime} 1 / (1 - 2 * p^(-s))^2.
%C A328854 Dirichlet convolution of A061142 with itself.
%H A328854 Amiram Eldar, <a href="/A328854/b328854.txt">Table of n, a(n) for n = 1..10000</a>
%F A328854 If n = Product (p_j^k_j) then a(n) = Product (2^k_j * (k_j + 1)).
%F A328854 a(n) = 2^bigomega(n) * tau(n), where bigomega = A001222 and tau = A000005.
%t A328854 Table[2^PrimeOmega[n] DivisorSigma[0, n], {n, 1, 75}]
%t A328854 f[p_, e_] := (e + 1)*2^e; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* _Amiram Eldar_, Dec 02 2020 *)
%o A328854 (PARI) a(n) = numdiv(n)*2^bigomega(n); \\ _Michel Marcus_, Dec 02 2020
%o A328854 (PARI) for(n=1, 100, print1(direuler(p=2, n, 1/(1 - 2*X)^2)[n], ", ")) \\ _Vaclav Kotesovec_, Aug 22 2021
%Y A328854 Cf. A000005, A001222, A061142, A123667, A322328.
%K A328854 nonn,mult
%O A328854 1,2
%A A328854 _Ilya Gutkovskiy_, Oct 28 2019