This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328867 #5 Nov 01 2019 18:41:58 %S A328867 1,2,3,4,5,7,8,9,11,13,16,17,19,21,23,25,27,29,31,32,37,39,41,43,47, %T A328867 49,53,57,59,61,63,64,65,67,71,73,79,81,83,87,89,91,97,101,103,107, %U A328867 109,111,113,115,117,121,125,127,128,129,131,133,137,139,147,149 %N A328867 Heinz numbers of integer partitions in which no two distinct parts are relatively prime. %C A328867 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A328867 A partition with no two distinct parts relatively prime is said to be intersecting. %e A328867 The sequence of terms together with their prime indices begins: %e A328867 1: {} %e A328867 2: {1} %e A328867 3: {2} %e A328867 4: {1,1} %e A328867 5: {3} %e A328867 7: {4} %e A328867 8: {1,1,1} %e A328867 9: {2,2} %e A328867 11: {5} %e A328867 13: {6} %e A328867 16: {1,1,1,1} %e A328867 17: {7} %e A328867 19: {8} %e A328867 21: {2,4} %e A328867 23: {9} %e A328867 25: {3,3} %e A328867 27: {2,2,2} %e A328867 29: {10} %e A328867 31: {11} %e A328867 32: {1,1,1,1,1} %t A328867 Select[Range[100],And@@(GCD[##]>1&)@@@Subsets[PrimePi/@First/@FactorInteger[#],{2}]&] %Y A328867 These are the Heinz numbers of the partitions counted by A328673. %Y A328867 The strict case is A318719. %Y A328867 The relatively prime version is A328868. %Y A328867 A ranking using binary indices is A326910. %Y A328867 The version for non-isomorphic multiset partitions is A319752. %Y A328867 The version for divisibility (instead of relative primality) is A316476. %Y A328867 Cf. A000837, A056239, A112798, A200976, A289509, A303283, A305843, A318715, A318716, A328336. %K A328867 nonn %O A328867 1,2 %A A328867 _Gus Wiseman_, Oct 30 2019