cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328867 Heinz numbers of integer partitions in which no two distinct parts are relatively prime.

This page as a plain text file.
%I A328867 #5 Nov 01 2019 18:41:58
%S A328867 1,2,3,4,5,7,8,9,11,13,16,17,19,21,23,25,27,29,31,32,37,39,41,43,47,
%T A328867 49,53,57,59,61,63,64,65,67,71,73,79,81,83,87,89,91,97,101,103,107,
%U A328867 109,111,113,115,117,121,125,127,128,129,131,133,137,139,147,149
%N A328867 Heinz numbers of integer partitions in which no two distinct parts are relatively prime.
%C A328867 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A328867 A partition with no two distinct parts relatively prime is said to be intersecting.
%e A328867 The sequence of terms together with their prime indices begins:
%e A328867     1: {}
%e A328867     2: {1}
%e A328867     3: {2}
%e A328867     4: {1,1}
%e A328867     5: {3}
%e A328867     7: {4}
%e A328867     8: {1,1,1}
%e A328867     9: {2,2}
%e A328867    11: {5}
%e A328867    13: {6}
%e A328867    16: {1,1,1,1}
%e A328867    17: {7}
%e A328867    19: {8}
%e A328867    21: {2,4}
%e A328867    23: {9}
%e A328867    25: {3,3}
%e A328867    27: {2,2,2}
%e A328867    29: {10}
%e A328867    31: {11}
%e A328867    32: {1,1,1,1,1}
%t A328867 Select[Range[100],And@@(GCD[##]>1&)@@@Subsets[PrimePi/@First/@FactorInteger[#],{2}]&]
%Y A328867 These are the Heinz numbers of the partitions counted by A328673.
%Y A328867 The strict case is A318719.
%Y A328867 The relatively prime version is A328868.
%Y A328867 A ranking using binary indices is A326910.
%Y A328867 The version for non-isomorphic multiset partitions is A319752.
%Y A328867 The version for divisibility (instead of relative primality) is A316476.
%Y A328867 Cf. A000837, A056239, A112798, A200976, A289509, A303283, A305843, A318715, A318716, A328336.
%K A328867 nonn
%O A328867 1,2
%A A328867 _Gus Wiseman_, Oct 30 2019