This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328868 #5 Nov 01 2019 18:42:06 %S A328868 17719,40807,43381,50431,74269,83143,101543,105703,116143,121307, %T A328868 123469,139919,140699,142883,171613,181831,185803,191479,203557, %U A328868 205813,211381,213239,215267,219271,230347,246703,249587,249899,279371,286897,289007,296993,300847 %N A328868 Heinz numbers of integer partitions with no two (not necessarily distinct) parts relatively prime, but with no divisor in common to all of the parts. %C A328868 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %e A328868 The sequence of terms together with their prime indices begins: %e A328868 17719: {6,10,15} %e A328868 40807: {6,14,21} %e A328868 43381: {6,15,20} %e A328868 50431: {10,12,15} %e A328868 74269: {6,10,45} %e A328868 83143: {10,15,18} %e A328868 101543: {6,21,28} %e A328868 105703: {6,15,40} %e A328868 116143: {12,14,21} %e A328868 121307: {10,15,24} %e A328868 123469: {12,15,20} %e A328868 139919: {6,15,50} %e A328868 140699: {6,22,33} %e A328868 142883: {6,10,75} %e A328868 171613: {6,14,63} %e A328868 181831: {6,20,45} %e A328868 185803: {10,14,35} %e A328868 191479: {14,18,21} %e A328868 203557: {15,18,20} %e A328868 205813: {10,15,36} %e A328868 211381: {10,12,45} %e A328868 213239: {6,15,70} %e A328868 215267: {6,10,105} %e A328868 219271: {6,26,39} %e A328868 230347: {6,6,10,15} %t A328868 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A328868 dv=Select[Range[100000],GCD@@primeMS[#]==1&&And[And@@(GCD[##]>1&)@@@Tuples[Union[primeMS[#]],2]]&] %Y A328868 These are the Heinz numbers of the partitions counted by A202425. %Y A328868 Terms of A328679 that are not powers of 2. %Y A328868 The strict case is A318716 (preceded by 2). %Y A328868 A ranking using binary indices (instead of prime indices) is A326912. %Y A328868 Heinz numbers of relatively prime partitions are A289509. %Y A328868 Cf. A000837, A056239, A112798, A200976, A291166, A302796, A316476, A318715, A319752, A319759, A328336, A328672, A328677, A328867. %K A328868 nonn %O A328868 1,1 %A A328868 _Gus Wiseman_, Oct 30 2019