cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328868 Heinz numbers of integer partitions with no two (not necessarily distinct) parts relatively prime, but with no divisor in common to all of the parts.

This page as a plain text file.
%I A328868 #5 Nov 01 2019 18:42:06
%S A328868 17719,40807,43381,50431,74269,83143,101543,105703,116143,121307,
%T A328868 123469,139919,140699,142883,171613,181831,185803,191479,203557,
%U A328868 205813,211381,213239,215267,219271,230347,246703,249587,249899,279371,286897,289007,296993,300847
%N A328868 Heinz numbers of integer partitions with no two (not necessarily distinct) parts relatively prime, but with no divisor in common to all of the parts.
%C A328868 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%e A328868 The sequence of terms together with their prime indices begins:
%e A328868    17719: {6,10,15}
%e A328868    40807: {6,14,21}
%e A328868    43381: {6,15,20}
%e A328868    50431: {10,12,15}
%e A328868    74269: {6,10,45}
%e A328868    83143: {10,15,18}
%e A328868   101543: {6,21,28}
%e A328868   105703: {6,15,40}
%e A328868   116143: {12,14,21}
%e A328868   121307: {10,15,24}
%e A328868   123469: {12,15,20}
%e A328868   139919: {6,15,50}
%e A328868   140699: {6,22,33}
%e A328868   142883: {6,10,75}
%e A328868   171613: {6,14,63}
%e A328868   181831: {6,20,45}
%e A328868   185803: {10,14,35}
%e A328868   191479: {14,18,21}
%e A328868   203557: {15,18,20}
%e A328868   205813: {10,15,36}
%e A328868   211381: {10,12,45}
%e A328868   213239: {6,15,70}
%e A328868   215267: {6,10,105}
%e A328868   219271: {6,26,39}
%e A328868   230347: {6,6,10,15}
%t A328868 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A328868 dv=Select[Range[100000],GCD@@primeMS[#]==1&&And[And@@(GCD[##]>1&)@@@Tuples[Union[primeMS[#]],2]]&]
%Y A328868 These are the Heinz numbers of the partitions counted by A202425.
%Y A328868 Terms of A328679 that are not powers of 2.
%Y A328868 The strict case is A318716 (preceded by 2).
%Y A328868 A ranking using binary indices (instead of prime indices) is A326912.
%Y A328868 Heinz numbers of relatively prime partitions are A289509.
%Y A328868 Cf. A000837, A056239, A112798, A200976, A291166, A302796, A316476, A318715, A319752, A319759, A328336, A328672, A328677, A328867.
%K A328868 nonn
%O A328868 1,1
%A A328868 _Gus Wiseman_, Oct 30 2019