cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328881 a(n+3) = 2^n - a(n), a(0)=a(2)=1, a(1)=0 for n >= 0.

This page as a plain text file.
%I A328881 #35 Dec 05 2019 08:22:09
%S A328881 1,0,1,0,2,3,8,14,29,56,114,227,456,910,1821,3640,7282,14563,29128,
%T A328881 58254,116509,233016,466034,932067,1864136,3728270,7456541,14913080,
%U A328881 29826162,59652323,119304648,238609294,477218589,954437176,1908874354,3817748707
%N A328881 a(n+3) = 2^n - a(n), a(0)=a(2)=1, a(1)=0 for n >= 0.
%C A328881 The array of a(n) and its repeated differences:
%C A328881     1,   0,   1,   0,   2,   3,   8,  14, ...
%C A328881    -1,   1,  -1,   2,   1,   5,   6,  15, ...
%C A328881     2,  -2,   3,  -1,   4,   1,   9,  12, ...
%C A328881    -4,   5,  -4,   5,  -3,   8,   3,  19, ...
%C A328881     9,  -9,   9,  -8,  11,  -5,  16,   5, ...
%C A328881   -18,  18, -17,  19, -16,  21, -11,  32, ...
%C A328881    36, -35,  36, -35,  37, -32,  43, -21, ...
%C A328881   -71,  71, -71,  72, -69,  75, -64,  85, ...
%C A328881   ...
%C A328881 The recurrence is the same for every row.
%C A328881 From _Jean-François Alcover_, Nov 28 2019: (Start)
%C A328881 It appears that, when odd, a(n) is never a multiple of 5.
%C A328881 Main and 3rd upper diagonals of the difference array are A001045 (Jacobsthal numbers); first upper diagonal is negated A001045; second upper diagonal is A000079 (powers of 2); 4th upper diagonal is A062092.
%C A328881 (End)
%H A328881 Colin Barker, <a href="/A328881/b328881.txt">Table of n, a(n) for n = 0..1000</a>
%H A328881 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-1,2).
%F A328881 a(n+1) - 2*a(n) = period 6: repeat [-2, 1, -2, 2, -1, 2].
%F A328881 a(n+12) - a(n) = 455*2^n.
%F A328881 From _Colin Barker_, Oct 29 2019: (Start)
%F A328881 G.f.: (1 - 2*x + x^2 - x^3) / ((1 + x)*(1 - 2*x)*(1 - x + x^2)).
%F A328881 a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4) for n>3.
%F A328881 (End)
%F A328881 a(n+2) - a(n) = A024495(n).
%F A328881 a(n+6) - a(n) = 7*2^n.
%F A328881 a(n+9) + a(n) = 57*2^n.
%F A328881 a(n) = A113405(n) + A092220(n+5).
%F A328881 9*a(n) = 2^n + 5*(-1)^n + 3*A010892(n). - _R. J. Mathar_, Nov 28 2019
%t A328881 a[0] = a[2] = 1; a[1] = 0; a[n_] := a[n] = 2^(n - 3) - a[n - 3]; Array[a, 36, 0] (* _Amiram Eldar_, Nov 06 2019 *)
%o A328881 (PARI) Vec((1 - 2*x + x^2 - x^3) / ((1 + x)*(1 - 2*x)*(1 - x + x^2)) + O(x^40)) \\ _Colin Barker_, Oct 29 2019
%Y A328881 Cf. A024495, A062092, A131714.
%Y A328881 Cf. A015565, A092220, A113405.
%K A328881 nonn,easy
%O A328881 0,5
%A A328881 _Paul Curtz_, Oct 29 2019