This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328887 #14 Feb 16 2025 08:33:58 %S A328887 1,1,1,1,2,1,1,4,4,1,1,8,15,8,1,1,16,54,54,16,1,1,32,189,328,189,32,1, %T A328887 1,64,648,1856,1856,648,64,1,1,128,2187,9984,16145,9984,2187,128,1,1, %U A328887 256,7290,51712,129000,129000,51712,7290,256,1,1,512,24057,260096,968125,1475856,968125,260096,24057,512,1 %N A328887 Array read by antidiagonals: T(n,m) is the number of acyclic edge sets in the complete bipartite graph K_{n,m}. %C A328887 In other words, the number of spanning forests of the complete bipartite graph K_{n,m} with isolated vertices allowed. %H A328887 Andrew Howroyd, <a href="/A328887/b328887.txt">Table of n, a(n) for n = 0..1325</a> %H A328887 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/questions/3235160/spanning-forests-of-bipartite-graphs-and-distinct-row-column-sums-of-binary-matr">Spanning forests of bipartite graphs and distinct row/column sums of binary matrices</a>. %H A328887 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CompleteBipartiteGraph.html">Complete Bipartite Graph</a>. %F A328887 T(n,m) = 1 + Sum_{i=1..n} Sum_{j=1..m} binomial(n,i)*binomial(m,j)*A328888(i,j). %e A328887 Array begins: %e A328887 ==================================================================== %e A328887 n\m | 0 1 2 3 4 5 6 7 %e A328887 ----+--------------------------------------------------------------- %e A328887 0 | 1 1 1 1 1 1 1 1 ... %e A328887 1 | 1 2 4 8 16 32 64 128 ... %e A328887 2 | 1 4 15 54 189 648 2187 7290 ... %e A328887 3 | 1 8 54 328 1856 9984 51712 260096 ... %e A328887 4 | 1 16 189 1856 16145 129000 968125 6925000 ... %e A328887 5 | 1 32 648 9984 129000 1475856 15450912 151201728 ... %e A328887 6 | 1 64 2187 51712 968125 15450912 219682183 2862173104 ... %e A328887 7 | 1 128 7290 260096 6925000 151201728 2862173104 48658878080 ... %e A328887 ... %o A328887 (PARI) \\ here U is A328888 as matrix. %o A328887 U(n, m=n)={my(M=matrix(n, m), N=matrix(n, m, n, m, n^(m-1) * m^(n-1))); for(n=1, n, for(m=1, m, M[n,m] = N[n,m] + sum(i=1, n-1, sum(j=1, m-1, binomial(n-1, i-1)*binomial(m, j)*N[i,j]*M[n-i, m-j])))); M} %o A328887 T(n, m=n)={my(M=U(n, m)); matrix(n+1, m+1, n, m, 1 + sum(i=1, n-1, sum(j=1, m-1, binomial(n-1,i)*binomial(m-1,j)*M[i,j])))} %o A328887 { my(A=T(7)); for(i=1, #A, print(A[i,])) } %Y A328887 Column k=2 is A006234. %Y A328887 Main diagonal is A297077. %Y A328887 Cf. A072590, A328888. %K A328887 nonn,tabl %O A328887 0,5 %A A328887 _Andrew Howroyd_, Oct 29 2019