cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328887 Array read by antidiagonals: T(n,m) is the number of acyclic edge sets in the complete bipartite graph K_{n,m}.

This page as a plain text file.
%I A328887 #14 Feb 16 2025 08:33:58
%S A328887 1,1,1,1,2,1,1,4,4,1,1,8,15,8,1,1,16,54,54,16,1,1,32,189,328,189,32,1,
%T A328887 1,64,648,1856,1856,648,64,1,1,128,2187,9984,16145,9984,2187,128,1,1,
%U A328887 256,7290,51712,129000,129000,51712,7290,256,1,1,512,24057,260096,968125,1475856,968125,260096,24057,512,1
%N A328887 Array read by antidiagonals: T(n,m) is the number of acyclic edge sets in the complete bipartite graph K_{n,m}.
%C A328887 In other words, the number of spanning forests of the complete bipartite graph K_{n,m} with isolated vertices allowed.
%H A328887 Andrew Howroyd, <a href="/A328887/b328887.txt">Table of n, a(n) for n = 0..1325</a>
%H A328887 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/questions/3235160/spanning-forests-of-bipartite-graphs-and-distinct-row-column-sums-of-binary-matr">Spanning forests of bipartite graphs and distinct row/column sums of binary matrices</a>.
%H A328887 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CompleteBipartiteGraph.html">Complete Bipartite Graph</a>.
%F A328887 T(n,m) = 1 + Sum_{i=1..n} Sum_{j=1..m} binomial(n,i)*binomial(m,j)*A328888(i,j).
%e A328887 Array begins:
%e A328887 ====================================================================
%e A328887 n\m | 0   1    2      3       4         5          6           7
%e A328887 ----+---------------------------------------------------------------
%e A328887   0 | 1   1    1      1       1         1          1           1 ...
%e A328887   1 | 1   2    4      8      16        32         64         128 ...
%e A328887   2 | 1   4   15     54     189       648       2187        7290 ...
%e A328887   3 | 1   8   54    328    1856      9984      51712      260096 ...
%e A328887   4 | 1  16  189   1856   16145    129000     968125     6925000 ...
%e A328887   5 | 1  32  648   9984  129000   1475856   15450912   151201728 ...
%e A328887   6 | 1  64 2187  51712  968125  15450912  219682183  2862173104 ...
%e A328887   7 | 1 128 7290 260096 6925000 151201728 2862173104 48658878080 ...
%e A328887   ...
%o A328887 (PARI) \\ here U is A328888 as matrix.
%o A328887 U(n, m=n)={my(M=matrix(n, m), N=matrix(n, m, n, m, n^(m-1) * m^(n-1))); for(n=1, n, for(m=1, m, M[n,m] = N[n,m] + sum(i=1, n-1, sum(j=1, m-1, binomial(n-1, i-1)*binomial(m, j)*N[i,j]*M[n-i, m-j])))); M}
%o A328887 T(n, m=n)={my(M=U(n, m)); matrix(n+1, m+1, n, m, 1 + sum(i=1, n-1, sum(j=1, m-1, binomial(n-1,i)*binomial(m-1,j)*M[i,j])))}
%o A328887 { my(A=T(7)); for(i=1, #A, print(A[i,])) }
%Y A328887 Column k=2 is A006234.
%Y A328887 Main diagonal is A297077.
%Y A328887 Cf. A072590, A328888.
%K A328887 nonn,tabl
%O A328887 0,5
%A A328887 _Andrew Howroyd_, Oct 29 2019