This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328896 #33 Apr 12 2020 14:29:45 %S A328896 11,19,29,31,41,47,59,61,71,79,89,101,107,109,113,131,139,149,151,179, %T A328896 181,191,199,211,229,233,239,241,251,263,269,271,281,307,311,331,347, %U A328896 349,353,359,379,389,401,409,419,421,431,439,449,461,479,491,499,509 %N A328896 Primes p such that p divides at least one of the integers Fibonacci(2k) for 2k <= p-1. %C A328896 Is the sequence infinite? %C A328896 Yes, it contains all primes p == 1 or 4 (mod 5), because such p divide Fibonacci(p-1). - _Robert Israel_, Nov 05 2019 %H A328896 Robert Israel, <a href="/A328896/b328896.txt">Table of n, a(n) for n = 1..10000</a> %e A328896 There are two integers k with 2*k <= 29-1 such that 29 divides Fibonacci(2*k), namely k = 7 and 14, so 29 is a term of the sequence. %p A328896 filter:= proc(p) local f,k,a,b,t; %p A328896 a:= -1; b:= 0; %p A328896 for k from 1 to (p-1)/2 do %p A328896 t:= a+2*b mod p; %p A328896 a:= a+b mod p; b:= t; %p A328896 if t = 0 then return true fi; %p A328896 od; %p A328896 false %p A328896 end proc: %p A328896 select(filter, [seq(ithprime(i),i=2..100)]); # _Robert Israel_, Nov 05 2019 %o A328896 (PARI) forprime(p=1, 100, for(k=1, (p-1)/2, if(Mod(fibonacci(2*k), p)==0, print1(p, ", "); break))) %o A328896 (Sage) %o A328896 def isA328896(p): %o A328896 return any(p.divides(fibonacci(2*k)) for k in (1..(p-1)//2)) %o A328896 print([p for p in primes(1,510) if isA328896(p)]) # _Peter Luschny_, Nov 01 2019 %Y A328896 Cf. A000045, A000928, A120337, A321217. %K A328896 nonn %O A328896 1,1 %A A328896 _Felix Fröhlich_, Oct 30 2019 %E A328896 Definition corrected by _Robert Israel_, Nov 05 2019