This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328901 #16 Oct 30 2020 12:19:36 %S A328901 1,1,1,1,1,3,1,1,2,10,1,1,5,5,35,1,1,3,7,14,126,1,1,7,28,21,42,77,1,1, %T A328901 4,12,30,66,132,1716,1,1,9,15,165,99,429,429,6435,1,1,5,55,55,143, %U A328901 1001,715,1430,24310,1,1,11,22,143,1001,1001,1144,2431,4862,46189,1,1,6,26,91,273,728,1768,3978,8398,16796,352716 %N A328901 Triangle T(n, k) read by rows: T(n, k) is the numerator of the rational Catalan number defined as binomial(n + k, n)/(n + k) for n > 0 and T(0, 0) = 1. %H A328901 Stefano Spezia, <a href="/A328901/b328901.txt">First 141 rows of the triangle, flattened</a> %H A328901 D. Armstrong, N. A. Loehr, G. S. Warrington, <a href="https://doi.org/10.1007/s00026-015-0293-6">Rational Parking Functions and Catalan Numbers</a>, Annals of Combinatorics (2016), Volume 20, Issue 1, pp 21-58. %H A328901 M. T. L. Bizley, <a href="http://bergeron.math.uqam.ca/wp-content/uploads/2014/09/Bizley.pdf">Derivation of a new formula for the number of minimal lattice paths from (0, 0) to (km, kn) having just t contacts with the line my = nx and having no points above this line; and a proof of Grossman's formula for the number of paths which may touch but do not rise above this line</a>, Journal of the Institute of Actuaries, Vol. 80, No. 1 (1954): 55-62. %F A328901 T(n, k) = lcm(binomial(n + k, n), n + k)/(n + k) for n > 0. %e A328901 n\k| 0 1 2 3 4 5 6 %e A328901 ---+---------------------------- %e A328901 0 | 1 %e A328901 1 | 1 1 %e A328901 2 | 1 1 3 %e A328901 3 | 1 1 2 10 %e A328901 4 | 1 1 5 5 35 %e A328901 5 | 1 1 3 7 14 126 %e A328901 6 | 1 1 7 28 21 42 77 %e A328901 ... %t A328901 Flatten[Join[{1},Table[LCM[Binomial[n+k,n],n+k]/(n+k),{n,1,11},{k,0,n}]]] %Y A328901 Main diagonal gives A201058 (for n>0). %Y A328901 Cf. A000108, A046899, A051162, A328902 (denominator). %K A328901 frac,nonn,tabl %O A328901 0,6 %A A328901 _Stefano Spezia_, Oct 30 2019