This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328904 #12 Jun 28 2023 08:22:00 %S A328904 7,2,7,1,6,0,1,5,1,4,1,2,4,2,5,9,2,4,3,0,4,4,7,0,8,4,4,0,0,9,5,2,1,7, %T A328904 6,9,3,5,4,5,8,9,0,4,5,5,6,4,5,8,3,3,0,4,1,4,2,5,7,7,7,6,4,1,7,5,2,9, %U A328904 0,8,6,8,4,3,2,3,0,5,7,7,3,3,5,5,0 %N A328904 Decimal expansion of x = 0.7271601514124259243... solution to 1 + 3^x = 5^x. %e A328904 0.7271601514124259243044708440095217693545890455645833041425777641752908684323... %t A328904 RealDigits[x /. FindRoot[1 + 3^x == 5^x, {x, 1}, WorkingPrecision -> 120]][[1]] (* _Amiram Eldar_, Jun 28 2023 *) %o A328904 (PARI) print(c=solve(x=0,1, 1+3^x-5^x)); digits(c\.1^default(realprecision))[^-1] \\ [^-1] to discard possibly incorrect last digit. Use e.g. \p999 to get more digits. - _M. F. Hasler_, Oct 31 2019 %Y A328904 Cf. A329334 (continued fraction). %Y A328904 Cf. A242208 (1 + 2^x = 4^x), A328900 (2^x + 3^x = 4^x), A328905 (1 + 2^x = 5^x). %K A328904 nonn,cons %O A328904 0,1 %A A328904 _M. F. Hasler_, Oct 31 2019