This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328905 #16 Jun 28 2023 08:21:45 %S A328905 5,6,3,8,9,5,5,2,4,2,5,9,9,3,6,4,7,9,4,9,0,3,9,2,9,4,5,9,3,7,9,5,6,5, %T A328905 6,5,5,1,5,2,1,1,7,3,0,5,0,9,9,5,5,2,9,8,5,9,2,8,0,8,3,8,0,1,2,0,4,6, %U A328905 6,2,0,0,5,2,2,8,1,9,7,3,5,5,0,4,2 %N A328905 Decimal expansion of the solution x = 0.56389552425993647949... to 1 + 2^x = 5^x. %e A328905 0.5638955242599364794903929459379565655152117305099552985928083801204662005228... %t A328905 RealDigits[x /. FindRoot[1 + 2^x == 5^x, {x, 1}, WorkingPrecision -> 120]][[1]] (* _Amiram Eldar_, Jun 28 2023 *) %o A328905 (PARI) print(c=solve(x=0,1, 1+2^x-5^x)); digits(c\.1^default(realprecision))[^-1] \\ [^-1] to discard possibly incorrect last digit. Use e.g. \p999 to get more digits. - _M. F. Hasler_, Oct 31 2019 %Y A328905 Cf. A329334 (continued fraction). %Y A328905 Cf. A242208 (1 + 2^x = 4^x), A328900 (2^x + 3^x = 4^x), A328904 (1 + 3^x = 5^x). %K A328905 nonn,cons %O A328905 0,1 %A A328905 _M. F. Hasler_, Oct 31 2019