cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328907 Decimal expansion of the solution x = 0.6009668516... to 1 + 3^x = 6^x.

This page as a plain text file.
%I A328907 #14 Jun 28 2023 08:21:41
%S A328907 6,0,0,9,6,6,8,5,1,6,1,3,6,7,5,4,8,5,7,1,5,7,0,5,2,6,4,6,3,1,8,3,8,1,
%T A328907 2,0,6,7,7,2,2,7,9,9,2,1,3,3,0,5,1,3,5,8,8,5,0,2,6,3,9,4,0,1,9,1,6,9,
%U A328907 2,1,2,0,4,0,9,8,0,5,1,3,9,9,6,8,5,2,3,4,8,3,7,0,2,5,3,1,3,9,8
%N A328907 Decimal expansion of the solution x = 0.6009668516... to 1 + 3^x = 6^x.
%e A328907 0.6009668516136754857157052646318381206772279921330513588502639401916921204...
%t A328907 RealDigits[x /. FindRoot[1 + 3^x == 6^x, {x, 1}, WorkingPrecision -> 120]][[1]] (* _Amiram Eldar_, Jun 28 2023 *)
%o A328907 (PARI) print(c=solve(x=0,1, 1+3^x-6^x)); digits(c\.1^default(realprecision))[^-1] \\ [^-1] to discard possibly incorrect last digit. Use e.g. \p999 to get more digits. - _M. F. Hasler_, Oct 31 2019
%Y A328907 Cf. A329337 (continued fraction).
%Y A328907 Cf. A242208 (1 + 2^x = 4^x), A328900 (2^x + 3^x = 4^x), A328904 (1 + 3^x = 5^x), A328905 (1 + 2^x = 5^x), A328906 (1 + 2^x = 6^x).
%K A328907 nonn,cons
%O A328907 0,1
%A A328907 _M. F. Hasler_, Nov 11 2019