A328911 Irregular triangle read by rows: T(n,k) = number of solutions to Erdös's Last Equation x_1*...*x_n = n*(x_1+...+x_n), 0 < x_1 <= ... <= x_n, having k+1 components x_i > 1, 1 <= k <= 2*log_2(n).
2, 0, 3, 3, 0, 4, 3, 1, 0, 4, 4, 0, 0, 6, 7, 4, 0, 0, 6, 5, 3, 0, 0, 5, 7, 4, 2, 1, 0, 8, 13, 5, 1, 0, 0, 9, 12, 3, 1, 0, 0, 6, 6, 3, 0, 0, 0, 8, 13, 9, 3, 0, 0, 0, 8, 7, 1, 0, 0, 0, 0, 6, 15, 6, 2, 1, 0, 0, 12, 16, 12, 3, 0, 0, 0, 12, 15, 11, 4, 2, 1, 0, 0, 6, 8, 2, 2, 0, 0, 0, 0
Offset: 2
Examples
The table starts: n : T(n,k), 1 <= k <= 2*log_2(n) 2 : 2 0 3 : 3 3 0 4 : 4 3 1 0 5 : 4 4 0 0 6 : 6 7 4 0 0 7 : 6 5 3 0 0 8 : 5 7 4 2 1 0 9 : 8 13 5 1 0 0 10 : 9 12 3 1 0 0 11 : 6 6 3 0 0 0 12 : 8 13 9 3 0 0 0 13 : 8 7 1 0 0 0 0 14 : 6 15 6 2 1 0 0 15 : 12 16 12 3 0 0 0 For n = 2 variables, we have the equation x1*x2 = 2*(x1 + x2) with positive integer solutions (3,6) and (4,4): Both have k+1 = 2 components > 1, i.e., k = 1. For n = 3, we have T(3,1) = 3 solutions with k+1 = 2 components > 1, {(1, 4, 15), (1, 5, 9), (1, 6, 7)}, and T(3,2) = 3 with k+1 = 3 components > 1, {(2, 2, 12), (2, 3, 5), (3,3,3)}. For n = 4 we have the 8 solutions (1, 1, 5, 28), (1, 1, 6, 16), (1, 1, 7, 12), (1, 1, 8, 10), (1, 2, 3, 12), (1, 2, 4, 7), (1, 3, 4, 4) and (2, 2, 2, 6). Four of them have k+1 = 2 components > 1, i.e., k = 1, whence T(4,1) = 4. Three have k+1 = 3 <=> k = 2, so T(4,2) = 3. One has k+1 = 4, so T(4,3) = 1. For n = 5, the solutions are, omitting initial components x_i = 1: {(6, 45), (7, 25), (9, 15), (10, 13), (2, 3, 35), (2, 5, 9), (3, 3, 10), (3, 5, 5)}. Therefore T(5,1..4) = (4, 4, 0, 0). For n = 6, the solutions are (omitting x_i = 1): {(7, 66), (8, 36), (9, 26), (10, 21), (11, 18), (12, 16), (2, 4, 27), (2, 5, 15), (2, 6, 11), (2, 7, 9), (3, 3, 18), (3, 4, 10), (3, 6, 6), (2, 2, 2, 24), (2, 2, 3, 9), (2, 2, 4, 6), (2, 3, 3, 5)}. Therefore T(6,1..5) = (6, 7, 4, 0, 0). For n = 9, the 27 solutions are (omitting '1's): {(10, 153), (11, 81), (12, 57), (13, 45), (15, 33), (17, 27), (18, 25), (21, 21), (2, 5, 117), (2, 6, 42), (2, 7, 27), (2, 9, 17), (2, 12, 12), (3, 4, 39), (3, 5, 21), (3, 6, 15), (3, 7, 12), (3, 9, 9), (4, 4, 18), (5, 5, 9), (6, 6, 6), (2, 2, 3, 36), (2, 2, 6, 9), (2, 3, 3, 13), (3, 3, 3, 7), (3, 3, 4, 5), (2, 3, 3, 3, 3)}. Therefore T(9,1..6) = (8, 13, 5, 1, 0, 0).
Links
- David A. Corneth, Table of n, a(n) for n = 2..14645 (first 899 rows flattened)
- Peter Shiu, On Erdös's Last Equation, Amer. Math. Monthly, 126 (2019), 802-808.
Programs
-
PARI
A328911(n,k,show=1)={if( k
0 && (n*vecsum(x)+t)%d==0 && (n*vecsum(x)+t)\d >= x[k] && s++&& show&& printf("%d,",concat(x,(n*vecsum(x)+t)\d)),1);s)}
Comments