cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A328920 let f(N) be the smallest index m such that from the m-th term on, the sequence {k^k mod N: k >= 0} enters into a cycle, then a(n) is the smallest number N such that f(N) = n, or 0 if no such n exists.

Original entry on oeis.org

1, 2, 0, 8, 81, 0, 15625, 128, 5764801, 0, 0, 2048, 3138428376721, 1594323, 3937376385699289, 32768, 43046721, 0, 14063084452067724991009, 524288, 37589973457545958193355601, 476837158203125, 31381059609, 8388608, 480250763996501976790165756943041, 847288609443, 0, 134217728, 0, 3219905755813179726837607
Offset: 0

Views

Author

Jianing Song, Oct 31 2019

Keywords

Comments

By the formula for f(N) shown in A328914, a(n) = 0 if and only if n > 1 and n-1 is powerful (n-1 is in A001694). Note that if f(N) = n, where N = Product_{i=1..t} p_i^e_i, then f(p_i^e_i) <= n, and there exists some i such that f(p_i^e_i) = n.

Examples

			By the formula shown in A328914, if f(N) = 7, then N must be divisible by either 2^7 = 128 or 3^7 = 729, so the smallest N is a(7) = 128.
		

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, if(n==1, 2, my(v=factor(n-1)); for(i=1, omega(n-1), if(v[i,2]==1, return(v[i,1]^n))); return(0)))

Formula

a(0) = 1, a(1) = 2; for n > 1, let p be the smallest prime such that n-1 is divisible by p but not by p^2, then a(n) = p^n, or 0 if no such p exists.
Showing 1-1 of 1 results.