A328926 Numbers k such that A328925(k) = 1; numbers k such that if we write k = Product_{i=1..t} p_i^e_i, then lcm_{1<=i,j<=t,i!=j} ord(p_i,p_j^e_j) = A002322(k), where ord(a,r) is the multiplicative order of a modulo r, and A002322 is the Carmichael lambda (usually written as psi).
1, 2, 6, 10, 12, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 35, 36, 38, 40, 42, 44, 45, 48, 50, 51, 52, 54, 56, 57, 58, 60, 63, 66, 69, 70, 72, 74, 75, 76, 77, 78, 80, 84, 85, 87, 88, 90, 91, 92, 93, 96, 99, 100, 102, 104, 105, 106, 108, 110, 114, 115, 116, 118, 119, 120, 122
Offset: 1
Keywords
Examples
For k = 115 = 5 * 23, A118106(115) = lcm(ord(23,5),ord(5,23)) = lcm(4,22) = 44 = A002322(115), so 115 is a term. For k = 973 = 7 * 139, A118106(973) = lcm(ord(139,7),ord(7,139)) = lcm(6,69) = 138 = A002322(973), so 973 is a term.
Comments